scholarly journals The E. coli Signal Recognition Particle Is Required for the Insertion of a Subset of Inner Membrane Proteins

Cell ◽  
1997 ◽  
Vol 88 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Nancy D Ulbrandt ◽  
John A Newitt ◽  
Harris D Bernstein
2000 ◽  
Vol 150 (3) ◽  
pp. 689-694 ◽  
Author(s):  
Hans-Georg Koch ◽  
Matthias Müller

Recent evidence suggests that in Escherichia coli, SecA/SecB and signal recognition particle (SRP) are constituents of two different pathways targeting secretory and inner membrane proteins to the SecYEG translocon of the plasma membrane. We now show that a secY mutation, which compromises a functional SecY–SecA interaction, does not impair the SRP-mediated integration of polytopic inner membrane proteins. Furthermore, under conditions in which the translocation of secretory proteins is strictly dependent on SecG for assisting SecA, the absence of SecG still allows polytopic membrane proteins to integrate at the wild-type level. These results indicate that SRP-dependent integration and SecA/SecB-mediated translocation do not only represent two independent protein delivery systems, but also remain mechanistically distinct processes even at the level of the membrane where they engage different domains of SecY and different components of the translocon. In addition, the experimental setup used here enabled us to demonstrate that SRP-dependent integration of a multispanning protein into membrane vesicles leads to a biologically active enzyme.


1999 ◽  
Vol 10 (7) ◽  
pp. 2163-2173 ◽  
Author(s):  
Hans-Georg Koch ◽  
Thomas Hengelage ◽  
Christoph Neumann-Haefelin ◽  
Juan MacFarlane ◽  
Hedda K. Hoffschulte ◽  
...  

The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coliwhich, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4.5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and ΔμH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.


2021 ◽  
Author(s):  
Liuqun Zhao ◽  
Gang Fu ◽  
Yanyan Cui ◽  
Zixiang Xu ◽  
Dawei Zhang

Signal recognition particle (SRP) is critical for delivering co-translational proteins to the bacterial inner membrane. Previously, we identified SRP suppressors in Escherichia coli that inhibit translation initiation and elongation, which provides an insight into the mechanism of bypassing the requirement of SRP. Suppressor mutations tend to be located in regions that govern protein translation under evolutionary pressure. To verify this hypothesis, we re-executed the suppressor screening of SRP. Here we isolated a novel SRP suppressor mutation located in the Shine-Dalgarno sequence of S10 operon, which partially offset the targeting defects of SRP-dependent proteins. We found that the suppressor mutation slowed the translation rate of proteins, especially of inner membrane proteins, which could compensate for the targeting defects of inner membrane proteins via extending the time window of protein targeting. Furthermore, the fidelity of translation was decreased in suppressor cells, suggesting that the quality control of translation was inactivated to provide a survival advantage under the loss of SRP stress. Our results demonstrate that the inefficient protein targeting due to SRP deletion can be rescued through modulating translational speed and accuracy.


1999 ◽  
Vol 181 (15) ◽  
pp. 4561-4567 ◽  
Author(s):  
John A. Newitt ◽  
Nancy D. Ulbrandt ◽  
Harris D. Bernstein

ABSTRACT The signal recognition particle (SRP) targeting pathway is required for the efficient insertion of many polytopic inner membrane proteins (IMPs) into the Escherichia coli inner membrane, but in the absence of SRP protein export proceeds normally. To define the properties of IMPs that impose SRP dependence, we analyzed the targeting requirements of bitopic IMPs that are structurally intermediate between exported proteins and polytopic IMPs. We found that disruption of the SRP pathway inhibited the insertion of only a subset of bitopic IMPs. Studies on a model bitopic AcrB-alkaline phosphatase fusion protein (AcrB 265-AP) showed that the SRP requirement for efficient insertion correlated with the presence of a large periplasmic domain (P1). As previously reported, perturbation of the SRP pathway also affected the insertion of a polytopic AcrB-AP fusion. Even exhaustive SRP depletion, however, failed to block the insertion of any AcrB derivative by more than 50%. Taken together, these data suggest that many proteins that are normally targeted by SRP can utilize alternative targeting pathways and that the structure of both hydrophilic and membrane-spanning domains determines the degree to which the biogenesis of a protein is SRP dependent.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1161-C1161
Author(s):  
Irmgard Sinning

More than 25% of the cellular proteome comprise membrane proteins that have to be inserted into the correct target membrane. Most membrane proteins are delivered to the membrane by the signal recognition particle (SRP) pathway which relies on the recognition of an N-terminal signal sequence. In contrast to this co-translational mechanism, which avoids problems due to the hydrophobic nature of the cargo proteins, tail-anchored (TA) membrane proteins utilize a post-translational mechanism for membrane insertion – the GET pathway (guided entry of tail-anchored membrane proteins). The SRP and GET pathways are both regulated by GTP and ATP binding proteins of the SIMIBI family. However, in the SRP pathway the SRP RNA plays a unique regulatory role. Recent insights into eukaryotic SRP will be discussed.


2005 ◽  
Vol 170 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Edith N.G. Houben ◽  
Raz Zarivach ◽  
Bauke Oudega ◽  
Joen Luirink

An unbiased photo–cross-linking approach was used to probe the “molecular path” of a growing nascent Escherichia coli inner membrane protein (IMP) from the peptidyl transferase center to the surface of the ribosome. The nascent chain was initially in proximity to the ribosomal proteins L4 and L22 and subsequently contacted L23, which is indicative of progression through the ribosome via the main ribosomal tunnel. The signal recognition particle (SRP) started to interact with the nascent IMP and to target the ribosome–nascent chain complex to the Sec–YidC complex in the inner membrane when maximally half of the transmembrane domain (TM) was exposed from the ribosomal exit. The combined data suggest a flexible tunnel that may accommodate partially folded nascent proteins and parts of the SRP and SecY. Intraribosomal contacts of the nascent chain were not influenced by the presence of a functional TM in the ribosome.


PROTEOMICS ◽  
2010 ◽  
Vol 10 (9) ◽  
pp. 1762-1779 ◽  
Author(s):  
Daniel Schwarz ◽  
Daniel Daley ◽  
Tobias Beckhaus ◽  
Volker Dötsch ◽  
Frank Bernhard

PLoS Biology ◽  
2013 ◽  
Vol 11 (12) ◽  
pp. e1001735 ◽  
Author(s):  
Bentley Lim ◽  
Ryoji Miyazaki ◽  
Saskia Neher ◽  
Deborah A. Siegele ◽  
Koreaki Ito ◽  
...  

2005 ◽  
Vol 33 (5) ◽  
pp. 1024-1027 ◽  
Author(s):  
A. Di Cola ◽  
E. Klostermann ◽  
C. Robinson

Numerous proteins are transported into or across the chloroplast thylakoid membrane. To date, two major pathways have been identified for the transport of luminal proteins (the Sec- and Tat-dependent pathways) and it is now clear that these protein translocases use fundamentally different transport mechanisms. Integral membrane proteins are inserted by means of at least two further pathways. One involves the input of numerous targeting factors, including SRP (signal recognition particle), FtsY and Albino3. Surprisingly, the other pathway does not involve any of the known chloroplastic targeting factors, and insertion is energy-independent, raising the possibility of an unusual ‘spontaneous’ insertion mechanism.


Sign in / Sign up

Export Citation Format

Share Document