Interactive effects of epidermal growth factor, transforming growth factor beta and gonadotropin on in vitro maturation of porcine oocytes

1998 ◽  
Vol 49 (1) ◽  
pp. 319 ◽  
Author(s):  
S.J. Uhm ◽  
H.M. Chung ◽  
K.R. Seung ◽  
N.-H. Kim ◽  
H.T. Lee ◽  
...  
The Prostate ◽  
1992 ◽  
Vol 21 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Debra M. Sutkowski ◽  
Chau-Jye Fong ◽  
Julia A. Sensibar ◽  
Alfred W. Rademaker ◽  
Edward R. Sherwood ◽  
...  

1988 ◽  
Vol 8 (6) ◽  
pp. 2479-2483
Author(s):  
C M Machida ◽  
L L Muldoon ◽  
K D Rodland ◽  
B E Magun

Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-beta); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-beta inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-beta both blocked initial induction of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-beta acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.


Author(s):  
Seyyed Jafar NOSRATABADI ◽  
Nasim HAYATI ROODBARI ◽  
Mohammad Hossein MODARRESI ◽  
Alireza FARSINEJAD ◽  
Majid FASIHI HARANDI

Background: In recent decades platyhelminths have been used as model organisms to address some of the fundamental questions related to the growth and development of animal organisms. Epidermal Growth Factor Receptors (EGFR) and Transforming Growth Factor beta (TGF-beta) have a regulatory role in the growth and development of Echinococcus species. This study determined the effect of alpha-tocopherol on the expression of EGFR and TGF-beta genes in three in vitro developmental stages of E. granulosus. Methods: E. granulosus protoscoleces were cultured in diphasic medium containing bovine serum and CMRL 1066. Three developmental stages of E. granulosus, i.e. invaginated protoscoleces, evaginated protoscoleces and three-proglottid worms, were treated by alphatocopherol (250 μg/ml for 36 h) and the expression of EGFR and TGF-beta genes were evaluated by using qPCR analysis. Results: Intact protoscoleces were successfully developed to the segmented worms in diphasic culture media. Higher levels of both EGFR and TGF-beta gene expression were observed in the invaginated protoscoleces as well as the segmented worms in comparison to the non-treated controls. Conclusion: Administration of alpha-tocopherol to different developmental stages of E. granulosus significantly enhanced EGFR and TGF-beta expression in the parasite. Both oxidant and non-oxidant activities of alpha-tocopherol could explain the study findings. Overexpression of the genes could in turn enhance growth factor effects and facilitates the viability of the parasite.


Reproduction ◽  
2000 ◽  
pp. 85-91 ◽  
Author(s):  
S Hasthorpe ◽  
S Barbic ◽  
PJ Farmer ◽  
JM Hutson

At birth, the mouse gonocyte does not resume mitotic activity for several days in vivo but, in an in vitro clonogenic system, cell division commences soon after culture. Somatic testis cell underlays had potent inhibitory activity on gonocyte-derived colony formation (23 +/- 15% compared with 84 +/- 1% in controls; P = 0.0001) when added to cultures of gonocytes in vitro. A Sertoli cell line, TM4B, had an even more pronounced effect on gonocyte clonogenic capacity, with 1 +/- 1% compared with 72 +/- 17% colony formation in controls (P = 0.0003). Testis cells appeared to have a direct inhibitory effect since testis-conditioned medium did not show a significant reduction in the number of colonies. The observed reduction in colony formation with the testis cell underlay was not accounted for by decreased attachment of gonocytes as simultaneous addition of a single cell suspension of testis cells was still effective in significantly reducing colony number when compared with controls (P = 0.01). Therefore, the observed inhibition exerted by testis cells appears to be a consequence of decreased proliferation of gonocytes. Growth factors belonging to the transforming growth factor beta superfamily which are known to be expressed in testis, such as transforming growth factor beta and epidermal growth factor, did not exert any inhibitory action on gonocyte-derived colony formation when added together or alone. However, a shift to a smaller colony size occurred in the presence of transforming growth factor beta and transforming growth factor beta plus epidermal growth factor, indicating a reduction in colony cell proliferation. Evidence for the expression of the Mullerian inhibiting substance receptor on newborn gonocytes using in situ hybridization was inconclusive. This finding was in agreement with the lack of a direct action of Mullerian inhibiting substance on the formation of gonocyte-derived colonies in vitro. Leukaemia inhibitory factor, alone or in combination with forskolin, had neither an inhibitory nor an enhancing effect on gonocyte-derived colony formation. An in vitro clonogenic method to assay for the proliferation of gonocytes in the presence of specific growth factors, cell lines, testis cell underlays and cell suspensions was used to identify a somatic cell-mediated inhibitor which may be responsible for the inhibitory action on gonocyte proliferation in vivo shortly after birth.


Sign in / Sign up

Export Citation Format

Share Document