Characterization of the cavity nucleation factor for life prediction under creep-fatigue interaction Choi, B.G., Nam, S.W., Yoon, Y.C. and Kim, J.J. Journal of Materials Science (1996) 31, 4957–4966

1997 ◽  
Vol 19 (10) ◽  
pp. 736
1996 ◽  
Vol 31 (18) ◽  
pp. 4957-4966 ◽  
Author(s):  
Baig Gyu Choi ◽  
Soo Woo Nam ◽  
Young Cheol Yoon ◽  
Joong Jae Kim

Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1791
Author(s):  
Marco Vizcarra-Pacheco ◽  
María Ley-Flores ◽  
Ana Mizrahim Matrecitos-Burruel ◽  
Ricardo López-Esparza ◽  
Daniel Fernández-Quiroz ◽  
...  

One of the main challenges facing materials science today is the synthesis of new biodegradable and biocompatible materials capable of improving existing ones. This work focused on the synthesis of new biomaterials from the bioconjugation of oleic acid with L-cysteine using carbodiimide. The resulting reaction leads to amide bonds between the carboxylic acid of oleic acid and the primary amine of L-cysteine. The formation of the bioconjugate was corroborated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and nuclear magnetic resonance (NMR). In these techniques, the development of new materials with marked differences with the precursors was confirmed. Furthermore, NMR has elucidated a surfactant structure, with a hydrophilic part and a hydrophobic section. Ultraviolet-visible spectroscopy (UV-Vis) was used to determine the critical micellar concentration (CMC) of the bioconjugate. Subsequently, light diffraction (DLS) was used to analyze the size of the resulting self-assembled structures. Finally, transmission electron microscopy (TEM) was obtained, where the shape and size of the self-assembled structures were appreciated.


Author(s):  
J. Kusumoto ◽  
H. Watanabe ◽  
A. Kanaya ◽  
K. Ichikawa ◽  
S. Sakurai

In order to develop the life prediction method under creep-fatigue loading for gas turbine combustion transition piece, creep-fatigue tests were carried out on both as-received and aged Ni-based superalloy Nimonic 263. Crack initiation and propagation behaviors for the smooth specimen were observed. An unique relationship was obtained between life fraction and the maximum surface crack length under triangular wave shape loading tests, except the results for the trapezoidal wave loading tests. The latter results were due to the over estimation of the surface crack length at the crack initiation. These were caused from an oxide film break during straining. In the case of removing the oxide film before the measurement of surface crack, the relationship between life fraction and the maximum surface crack length obtained as unique relationship regardless of triangular and trapezoidal strain wave shapes. Using the life prediction method proposed, which is based on maximum surface crack length, the damage of combustion transition piece materials in service was evaluated.


2011 ◽  
Vol 465 ◽  
pp. 47-54 ◽  
Author(s):  
Stephen D. Antolovich ◽  
Robert L. Amaro ◽  
Richard W. Neu ◽  
A Staroselsky

In a world increasingly concerned with environmental factors and efficient use of resources, increasing operating temperatures of high temperature machinery can play an important role in meeting these goals. In addition, the cost of failure of such devices is rapidly becoming prohibitive. For example, in an airline crash airframe and engine manufacturers are, on average, held liable for 1,000,000 euros per fatality excluding the loss of property. Thus there is considerable pressure to make machinery that can operate much more safely at high temperatures. This means that the old ways of guarding against high temperature fatigue failure (e.g. factor of safety, S/N curves, creep life) are no longer acceptable; more reliable, accurate, and efficient means are needed to manage life, durability and risk. In this paper, high temperature fatigue is considered in terms of past successes and current challenges. Particular emphasis is placed on understanding damage mechanisms and their interactions both in terms of scientific interest and technological importance. Materials used in nuclear reactors (e.g. selected steels and solid solution Ni-base alloys) and in hot sections of jet engines (e.g. superalloys) are used as vehicles to illustrate damage evolution and interaction. Phenomenological life prediction models are presented and compared with physics-based damage evolution/interaction models which are based on observed physical processes such as creep/fatigue/environment interactions. It is shown that in many cases, in spite of the emphasis on creep-fatigue interactions, the most damaging forms of damage that occur under thermo-mechanical fatigue (TMF) loading result from the interaction of slip bands with oxidized boundaries.


Author(s):  
Koichi Yagi ◽  
Kiyoshi Kubo ◽  
Osamu Kanemaru ◽  
Toshio Ohba ◽  
Chiaki Tanaka

Sign in / Sign up

Export Citation Format

Share Document