Turbulent friction factor for two-phase: air-viscoelastic flows through a horizontal tube

1997 ◽  
Vol 18 (6) ◽  
pp. 559-566 ◽  
Author(s):  
B.K. Rao
1998 ◽  
Vol 120 (1) ◽  
pp. 136-139
Author(s):  
B. K. Rao

Turbulent experimental friction factors for air and power-law fluid flows through a horizontal tube are reported. The power-law fluids studied were aqueous solutions of Carbopol® (at concentrations 1000 and 2000 wppm). The two-phase friction factors were correlated in terms of the generalized Reynolds number (Re*). Over a range of the Re* from 6000 to 80,000, the simpler homogeneous model is accurate enough for engineering prediction of turbulent friction factor for air and power-law fluid flows through straight tubes.


1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


Author(s):  
Xiaolong Yan ◽  
Wei Li ◽  
Weiyu Tang ◽  
Hua Zhu ◽  
Zhijian Sun ◽  
...  

Enhanced condensation heat transfer of two-phase flow on the horizontal tube side receives more and more concerns for its fundamentality and importance. Experimental investigations on convective condensation were performed respectively in different horizontal tubes: (i) a smooth tube (11.43 mm, inner diameter); (ii) a herringbone tube (11.43 mm, fin root diameter); and (iii) three enhanced surface (EHT) tubes (11.5 mm, equivalent inner diameter): 1EHT tube, 2EHT-1 tube and 2EHT-2 tubes. The surface of EHT tubes is enhanced by arrays of dimples with the background of petal arrays. Experiments were conducted at a saturation temperature of approximately 320 K; 0.8 inlet quality; and 0.2 outlet quality; 72–181 kg·m−2·s−1 mass flux using R22, R32 and R410A as the working fluid. The refrigerant R32 presents great heat transfer performance than R410A and R22 at low mass flux due to its higher latent heat of vaporization and larger thermal conductivity. The heat enhancement ratio of the herringbone tube is 2.72–2.82, rated number one. The primary dimples on the EHT tube increase turbulence and flow separation, and the secondary petal pattern produce boundary layer disruption to many smaller scale eddies. The 2EHT tubes are inferior to the 1EHT tube. A performance factor is used to evaluate the enhancement effect except of the contribution of area increase.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
G. Ribatskia ◽  
J. R. Thome

This paper presents a state-of-the-art review of the hydrodynamic aspects of two-phase flow across horizontal tube bundles. The review covers studies related to the evaluation of void fraction, two-phase flow behaviors and pressure drops on the shell side of staggered and in-line tube bundles for upward, downward and side-to-side flows. This study of the literature critically describes the proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop. These predicting methods are generally based on experimental results for adiabatic air-water flows. A limited number of experimental studies with R-11 and R-113 were also carried out in the past. The review shows noticeable discrepancies among the available prediction methods. Finally, this study suggests that further research focusing on the development of representative databanks and new prediction methods is still necessary.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Adnan M. Hussein ◽  
K. V. Sharma ◽  
R. A. Bakar ◽  
K. Kadirgama

The additives of solid nanoparticles to liquids are significant enhancement of heat transfer and hydrodynamic flow. In this study, the thermal properties of three types of nanoparticles (Al2O3, TiO2, and SiO2) dispersed in water as a base fluid were measured experimentally. Forced convection heat transfer turbulent flow inside heated flat tube was numerically simulated. The heat flux around flat tube is 5000 W/m2and Reynolds number is in the range of5×103to50×103. CFD model by finite volume method used commercial software to find hydrodynamic and heat transfer coefficient. Simulation study concluded that the thermal properties measured and Reynolds number as input and friction factor and Nusselt number as output parameters. Data measured showed that thermal conductivity and viscosity increase with increasing the volume concentration of nanofluids with maximum deviation 19% and 6%, respectively. Simulation results concluded that the friction factor and Nusselt number increase with increasing the volume concentration. On the other hand, the flat tube enhances heat transfer and decreases pressure drop by 6% and −4%, respectively, as compared with circular tube. Comparison of numerical analysis with experimental data available showed good agreement with deviation not more than 2%.


Author(s):  
Paul J. Kreitzer ◽  
Michael Hanchak ◽  
Larry Byrd

Flow regime Identification is an integral aspect of modeling two phase flows as most pressure drop and heat transfer correlations rely on a priori knowledge of the flow regime for accurate system predictions. In the current research, two phase R-134a flow is studied in a 7mm adiabatic horizontal tube over a mass flux range of 100–400 kg/m2s between 550–750 kPa. Electric Capacitance Tomography results for 196 test points were analyzed using statistical methods and neural networks. This data provided repeatable normalized permittivity ratio signatures based on the flow distributions. The first four temporal moments from the mean scaled permittivity data were utilized as input variables. Results showed that only 80 percent of flow regimes could be correctly identified using seven flow regime classifications. However reducing to five more commonly used regimes resulted in an improvement to 99 percent of the flow regimes correctly identified. Both methods of neural network training resulted in errors that were off by mostly one flow regime classification. Further analysis shows that transition cases can oscillate between two separate flow regimes at the same time.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Agus Sunjarianto Pamitran ◽  
Sentot Novianto ◽  
Normah Mohd-Ghazali ◽  
Nasruddin Nasruddin ◽  
Raldi Koestoer

Two-phase flow boiling pressure drop experiment was conducted to observe its characteristics and to develop a new correlation of void fraction based on the separated model. Investigation is completed on the natural refrigerant R-290 (propane) in a horizontal circular tube with a 7.6 mm inner diameter under experimental conditions of 3.7 to 9.6 °C saturation temperature, 10 to 25 kW/m2 heat flux, and 185 to 445 kg/m2s mass flux. The present experimental data was used to obtain the calculated void fraction which then was compared to the predicted void fraction with 31 existing correlations. A new void fraction correlation for predicting two-phase flow boiling pressure drop, as a function of Reynolds numbers, was proposed. The measured pressure drop was compared to the predicted pressure drop with some existing pressure drop models that use the newly developed void fraction model. The homogeneous model of void fraction showed the best prediction with 2% deviation


Sign in / Sign up

Export Citation Format

Share Document