Surface-dimpled commercially pure titanium implant and bone ingrowth

Biomaterials ◽  
1997 ◽  
Vol 18 (9) ◽  
pp. 691-696 ◽  
Author(s):  
Jianguo Li ◽  
Hailhong Liao ◽  
Bahaman Fartash ◽  
Leif Hermansson ◽  
Thomas Johnsson
2013 ◽  
Vol 787 ◽  
pp. 376-381 ◽  
Author(s):  
Aleksandr Aleksandrovich Fomin ◽  
Igor Vladimirovich Rodionov ◽  
Aleksey Borisovich Steinhauer ◽  
Marina Alekseevna Fomina ◽  
Andrey Mikhailovich Zakharevich ◽  
...  

The article describes prospective composite biocompatible titania coatings modified with hydroxyapatite nanoparticles and obtained on intraosseous implants fabricated from commercially pure titanium. Consistency changes of morphological characteristics and crystalline structure, mechanical properties and biocompatibility of experimental titanium implant coatings obtained by the combination of oxidation and surface modification with hydroxyapatite during induction heat treatment are defined.


2018 ◽  
Vol 30 (2) ◽  
pp. 10-16
Author(s):  
Mohammad Hasan Mohammad ◽  
Nada M. H. Al-Ghaban

Background: One of the unique prosthesis for tooth or teeth replacement is the dental implant. Our attempt is using a biomaterial system that is easily obtained and applicable and has the ability to provoke osteoinductive growth factor to enhance bone formation at the site of application. One of these natural polymers is hyaluronic acid. Material and methods: Sixty machined surface implants from commercially pure titanium rod inserted in thirty NewZealand rabbits. Two implants placed in both tibia of each rabbit. The animals scarified at 1, 2 and 4 weeks after implantation (10 rabbits for each interval). For all of animals the right tibia’s implant was control (uncoated) and the left one was experimental (coated with 0.1ml Hyaluronic acid gel). All sections have been stained with Haematoxylin and Eosin then they were histologically examined and assessed for histomorphometric analysis for counting of bone cells (osteoblast, osteocyte and osteoclast), cortical bone thickness, trabecular width, thread width and marrow space star volume (V*). Results: Histological findings for hyaluronic acid- coated titanium implant revealed an earlier bone formation, mineralization and maturation than that in control groups. Histomorphometric analysis for all bone parameters that examined in this study, showed highly significant difference between control and experimental groups in all healing intervals. Conclusion: Commercially pure titanium endosseous implants coated with hyaluronic acid may be osteocoductive thus accelerating healing process and enhancing osseointegration.


2016 ◽  
Vol 10 (1) ◽  
pp. 486-496 ◽  
Author(s):  
Manuel Alberto Bortagaray ◽  
Claudio Arturo Antonio Ibañez ◽  
Maria Constanza Ibañez ◽  
Juan Carlos Ibañez

Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences.


2018 ◽  
Vol 30 (2) ◽  
pp. 10-16
Author(s):  
Mohammad H. Mohammad ◽  
Nada M.H. Al Ghaban

Background: One of the unique prosthesis for tooth or teeth replacement is the dental implant. Our attempt is using a biomaterial system that is easily obtained and applicable and has the ability to provoke osteoinductive growth factor to enhance bone formation at the site of application. One of these natural polymers is hyaluronic acid. Material and methods: Sixty machined surface implants from commercially pure titanium rod inserted in thirty NewZealand rabbits. Two implants placed in both tibia of each rabbit. The animals scarified at 1, 2 and 4 weeks after implantation (10 rabbits for each interval). For all of animals the right tibia’s implant was control (uncoated) and the left one was experimental (coated with 0.1ml Hyaluronic acid gel). All sections have been stained with Haematoxylin and Eosin then they were histologically examined and assessed for histomorphometric analysis for counting of bone cells (osteoblast, osteocyte and osteoclast), cortical bone thickness, trabecular width, thread width and marrow space star volume (V*). Results: Histological findings for hyaluronic acid- coated titanium implant revealed an earlier bone formation, mineralization and maturation than that in control groups. Histomorphometric analysis for all bone parameters that examined in this study, showed highly significant difference between control and experimental groups in all healing intervals. Conclusion: Commercially pure titanium endosseous implants coated with hyaluronic acid may be osteocoductive thus accelerating healing process and enhancing osseointegration.


2004 ◽  
Vol 92 (2) ◽  
pp. 132-138 ◽  
Author(s):  
Ivete Aparecida de Mattias Sartori ◽  
Ricardo Faria Ribeiro ◽  
Carlos Eduardo Francischone ◽  
Maria da Gloria Chiarello de Mattos

Alloy Digest ◽  
1979 ◽  
Vol 28 (12) ◽  

Abstract RMI 0.2% Pd is a grade of commercially pure titanium to which up to 0.2% palladium has been added. It has a guaranteed minimum yield strength of 40,000 psi with good ductility and formability. It is recommended for corrosion resistance in the chemical industry and other places where the environment is mildly reducing or varies between oxidizing and reducing. The alloy has improved resistance to crevice corrosion at low pH and elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-74. Producer or source: RMI Company.


Sign in / Sign up

Export Citation Format

Share Document