Event related potentials (ERPs) in elementary cognitive tasks reflect task difficulty and task threshold

Intelligence ◽  
1996 ◽  
Vol 22 (1) ◽  
pp. 1-22 ◽  
Author(s):  
P.G. Caryl ◽  
Alison Harper
Author(s):  
Sri Wulandari Wulandari ◽  
Donny Hendrawan

Gender-stereotype threat consistently accounts for underperformance phenomena experienced by women on male-stereotyped cognitive tasks. However, only a few studies have examined how the threat is affecting performance on female-stereotyped cognitive tasks, such as letter fluency. The present study examined whether variations in the cues to activate stereotype threat and the level of task difficulty would affect the letter fluency performance of undergraduate men and women (<em>n</em> = 168) and the underlying cognitive processes of this performance (i.e., switching, clustering). The results indicated participants held beliefs about women&rsquo;s superiority in this task. However, threat-activation cues did not affect production of correct words, errors, clustering, or switching in men and women. Task difficulty affected the number of correct words, yet it did not interact with the stereotype threat-activation cues. Finally, participants&rsquo; actual performance was related to their self-rating perception about their ability instead of the stereotyping they perceived. The effect of self-efficacy, educational level, and individuals&rsquo; susceptibilities should be taken into account when studying the effects of stereotype threat.


1981 ◽  
Vol 25 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Arthur Kramer ◽  
Christopher Wickens ◽  
Linda Vanasse ◽  
Earle Heffley ◽  
Emanuel Donchin

The utility of the Event Related Brain Potential for the evaluation of task load was investigated. Subjects performed a discrete step tracking task with either first or second order control dynamics. In different conditions, the subject covertly counted auditory probes, visual probes, or tracking target steps presented in a Bernoulli series. In a fourth experimental condition subjects performed the primary tracking task without a secondary task. In the auditory condition, an increase in the difficulty of the primary task produced a decrease in the amplitude of the P300 elicited by the secondary count task. The introduction of the primary task in the visual condition resulted in an initial reduction in P300 amplitude but increasing task difficulty failed to attenuate the P300 further. A positive relationship between primary task difficulty and P300 amplitude was obtained in the step conditions. Furthermore, this effect did not require that the step changes be counted. The results are addressed in terms of the relative advantages of primary and secondary ERP workload assessment techniques.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261947
Author(s):  
Sharon Hassin-Baer ◽  
Oren S. Cohen ◽  
Simon Israeli-Korn ◽  
Gilad Yahalom ◽  
Sandra Benizri ◽  
...  

Objective The purpose of this study is to explore the possibility of developing a biomarker that can discriminate early-stage Parkinson’s disease from healthy brain function using electroencephalography (EEG) event-related potentials (ERPs) in combination with Brain Network Analytics (BNA) technology and machine learning (ML) algorithms. Background Currently, diagnosis of PD depends mainly on motor signs and symptoms. However, there is need for biomarkers that detect PD at an earlier stage to allow intervention and monitoring of potential disease-modifying therapies. Cognitive impairment may appear before motor symptoms, and it tends to worsen with disease progression. While ERPs obtained during cognitive tasks performance represent processing stages of cognitive brain functions, they have not yet been established as sensitive or specific markers for early-stage PD. Methods Nineteen PD patients (disease duration of ≤2 years) and 30 healthy controls (HC) underwent EEG recording while performing visual Go/No-Go and auditory Oddball cognitive tasks. ERPs were analyzed by the BNA technology, and a ML algorithm identified a combination of features that distinguish early PD from HC. We used a logistic regression classifier with a 10-fold cross-validation. Results The ML algorithm identified a neuromarker comprising 15 BNA features that discriminated early PD patients from HC. The area-under-the-curve of the receiver-operating characteristic curve was 0.79. Sensitivity and specificity were 0.74 and 0.73, respectively. The five most important features could be classified into three cognitive functions: early sensory processing (P50 amplitude, N100 latency), filtering of information (P200 amplitude and topographic similarity), and response-locked activity (P-200 topographic similarity preceding the motor response in the visual Go/No-Go task). Conclusions This pilot study found that BNA can identify patients with early PD using an advanced analysis of ERPs. These results need to be validated in a larger PD patient sample and assessed for people with premotor phase of PD.


Author(s):  
Dimitrios J Palidis ◽  
Heather R. McGregor ◽  
Andrew Vo ◽  
Penny A. MacDonald ◽  
Paul L Gribble

Dopamine signaling is thought to mediate reward-based learning. We tested for a role of dopamine in motor adaptation by administering the dopamine precursor levodopa to healthy participants in two experiments involving reaching movements. Levodopa has been shown to impair reward-based learning in cognitive tasks. Thus, we hypothesized that levodopa would selectively impair aspects of motor adaptation that depend on reinforcement of rewarding actions.In the first experiment, participants performed two separate tasks in which adaptation was driven either by visual error-based feedback of the hand position or binary reward feedback. We used EEG to measure event-related potentials evoked by task feedback. We hypothesized that levodopa would specifically diminish adaptation and the neural responses to feedback in the reward learning task. However, levodopa did not affect motor adaptation in either task nor did it diminish event-related potentials elicited by reward outcomes. In the second experiment, participants learned to compensate for mechanical force field perturbations applied to the hand during reaching. Previous exposure to a particular force field can result in savings during subsequent adaptation to the same force field or interference during adaptation to an opposite force field. We hypothesized that levodopa would diminish savings and anterograde interference, as previous work suggests that these phenomena result from a reinforcement learning process. However, we found no reliable effects of levodopa.These results suggest that reward-based motor adaptation, savings, and interference may not depend on the same dopaminergic mechanisms that have been shown to be disrupted by levodopa during various cognitive tasks.


2019 ◽  
Vol 9 (5) ◽  
pp. 116 ◽  
Author(s):  
Luis Aguado ◽  
Karisa Parkington ◽  
Teresa Dieguez-Risco ◽  
José Hinojosa ◽  
Roxane Itier

Faces showing expressions of happiness or anger were presented together with sentences that described happiness-inducing or anger-inducing situations. Two main variables were manipulated: (i) congruency between contexts and expressions (congruent/incongruent) and (ii) the task assigned to the participant, discriminating the emotion shown by the target face (emotion task) or judging whether the expression shown by the face was congruent or not with the context (congruency task). Behavioral and electrophysiological results (event-related potentials (ERP)) showed that processing facial expressions was jointly influenced by congruency and task demands. ERP results revealed task effects at frontal sites, with larger positive amplitudes between 250–450 ms in the congruency task, reflecting the higher cognitive effort required by this task. Effects of congruency appeared at latencies and locations corresponding to the early posterior negativity (EPN) and late positive potential (LPP) components that have previously been found to be sensitive to emotion and affective congruency. The magnitude and spatial distribution of the congruency effects varied depending on the task and the target expression. These results are discussed in terms of the modulatory role of context on facial expression processing and the different mechanisms underlying the processing of expressions of positive and negative emotions.


2005 ◽  
Vol 17 (12) ◽  
pp. 1907-1922 ◽  
Author(s):  
Edward K. Vogel ◽  
Geoffrey F. Woodman ◽  
Steven J. Luck

Attention operates at an early stage in some experimental paradigms and at a late stage in others, which suggests that the locus of selection is flexible. The present study was designed to determine whether the locus of selection can vary flexibly within a single experimental paradigm as a function of relatively modest variations in stimulus and task parameters. In the first experiment, a new method for assessing the locus of selection was developed. Specifically, attention can influence perceptual encoding only if it is directed to the target before a perceptual representation of the target has been formed, whereas attention can influence postperceptual processes even if attention is cued after perception is complete. Event-related potentials were used to confirm the validity of this method. The subsequent experiments used cueing tasks in which subjects were required to perceive and remember a set of objects, and the difficulty of the perception and memory components of the task were varied. When the task overloaded perception but not working memory, attention influenced the formation of perceptual representations but not the storage of these representations in memory; when the task overloaded working memory but not perception, attention influenced the transfer of perceptual representations into memory but not the formation of the perceptual representations. Thus, attention operates to select relevant information at whatever stage or stages of processing are overloaded by a particular stimulus-task combination.


2021 ◽  
Vol 118 (4) ◽  
pp. e2011796118
Author(s):  
Julia W. Y. Kam ◽  
Zachary C. Irving ◽  
Caitlin Mills ◽  
Shawn Patel ◽  
Alison Gopnik ◽  
...  

Humans spend much of their lives engaging with their internal train of thoughts. Traditionally, research focused on whether or not these thoughts are related to ongoing tasks, and has identified reliable and distinct behavioral and neural correlates of task-unrelated and task-related thought. A recent theoretical framework highlighted a different aspect of thinking—how it dynamically moves between topics. However, the neural correlates of such thought dynamics are unknown. The current study aimed to determine the electrophysiological signatures of these dynamics by recording electroencephalogram (EEG) while participants performed an attention task and periodically answered thought-sampling questions about whether their thoughts were 1) task-unrelated, 2) freely moving, 3) deliberately constrained, and 4) automatically constrained. We examined three EEG measures across different time windows as a function of each thought type: stimulus-evoked P3 event-related potentials and non–stimulus-evoked alpha power and variability. Parietal P3 was larger for task-related relative to task-unrelated thoughts, whereas frontal P3 was increased for deliberately constrained compared with unconstrained thoughts. Frontal electrodes showed enhanced alpha power for freely moving thoughts relative to non-freely moving thoughts. Alpha-power variability was increased for task-unrelated, freely moving, and unconstrained thoughts. Our findings indicate distinct electrophysiological patterns associated with task-unrelated and dynamic thoughts, suggesting these neural measures capture the heterogeneity of our ongoing thoughts.


Sign in / Sign up

Export Citation Format

Share Document