Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation

2002 ◽  
Vol 88 (2) ◽  
pp. 223-227 ◽  
Author(s):  
Weon Bae ◽  
Ashok Mulchandani ◽  
Wilfred Chen
1999 ◽  
Vol 6 (4) ◽  
pp. 499-503 ◽  
Author(s):  
Young-Don Kwak ◽  
Seung-Ku Yoo ◽  
Eui-Joong Kim

ABSTRACT A new system designed for cell surface display of recombinant proteins on Escherichia coli has been evaluated for expression of eukaryotic viral proteins. Human immunodeficiency virus type 1 (HIV-1) gp120 was fused to the C terminus of ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, fluorescence-activated cell-sorting analysis, whole-cell enzyme-linked immunosorbent assay, and ice nucleation activity assay confirmed the successful expression of HIV-1 gp120 on the surface ofEscherichia coli. This study shows that the INP system can be used for the expression of eukaryotic viral proteins. There is also a possibility that the INP system can be used as an AIDS diagnostic system, an oral vaccine delivery system, and an expression system for various heterologous higher-molecular-weight proteins.


2021 ◽  
Author(s):  
Qianqian Li ◽  
Tuantuan Wang ◽  
Yangzhi Ye ◽  
Shimin Guan ◽  
Baoguo Cai ◽  
...  

Abstract Objective To establish a temperature-induced chitosanase bacterial cell surface display system to produce chitooligosaccharides (COSs) efficiently for industrial applications. Results Temperature-inducible chitosanase CSN46A bacterial surface display systems containing one or two copies of ice nucleation protein (InaQ-N) as anchoring motifs were successfully constructed on the basis of Escherichia coli and named as InaQ-N-CSN46A and 2InaQ-N-CSN46A. The specific enzyme activity of 2InaQ-N-CSN46A reached 886.33±0.81 U/g cell dry weight, which was 45.6% higher than that of InaQ-N-CSN46A. However, few proteins were detected in 2InaQ-N-CSN46A hydrolysis system. Therefore, 2InaQ-N-CSN46A had higher hydrolysis efficiency and stability than InaQ-N-CSN46A. GPC revealed that under the optimum enzymatic hydrolysis temperature, the final products were mainly chitobiose and chitotriose. Chitopentaose accumulated (77.62%) when the hydrolysis temperature reached 60 ℃. FTIR and NMR analysis demonstrated that the structures of the two hydrolysis products were consistent with those of COSs.Conclusions In this study, chitosanase was expressed on the surfaces of E. coli by increasing induction temperature, and chitosan was hydrolysed directly without enzyme purification steps. This study provided a novel strategy for industrial COSs production.


Sign in / Sign up

Export Citation Format

Share Document