Characterization of bound rubber of filled styrene-butadiene rubber compounds using pyrolysis-gas chromatography

2000 ◽  
Vol 55 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Sung-Seen Choi
e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Betty L. López ◽  
León Dario Pérez ◽  
Mónica Mesa ◽  
Ligia Sierra ◽  
Eric Devaux ◽  
...  

AbstractMesoporous silica is used as filler for styrene-butadiene rubber (SBR); filler-polymer interactions are compared with those exhibited when Ultrasil silica (VN3) is used. A silane coupling agent is added to improve filler dispersion and its influence on the bound-rubber formation is also investigated. The bound-rubber content is higher for the mesoporous silica and increases further for the sample containing silane. The increase is explained by chemical interactions between filler and rubber and penetration of the rubber chains into the mesopores. This is confirmed by 13C solid-state NMR, IR spectroscopy and differential scanning calorimetry. Dynamic mechanical thermal analysis shows higher storage modulus for the rubber filled with mesoporous silica.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 209 ◽  
Author(s):  
Jungmin Jin ◽  
Jacques W. M. Noordermeer ◽  
Wilma K. Dierkes ◽  
Anke Blume

Marching modulus phenomena are often observed in silica-reinforced solution styrene–butadiene rubber/butadiene rubber (S-SBR/BR) tire tread compounds. When such a situation happens, it is difficult to determine the optimum curing time, and as a consequence the physical properties of the rubber vulcanizates may vary. Previous studies have demonstrated that the curing behavior of silica compounds is related to the degree of silanization. For the present work, the effect of silanization temperature and time on the marching modulus of silica-filled rubber was evaluated. The correlations between these mixing parameters and their effect on the factors that have a strong relation with marching modulus intensity (MMI) were investigated: the amount of bound rubber, the filler flocculation rate (FFR), and the filler–polymer coupling rate (CR). The MMI was monitored by measuring the vulcanization rheograms using a rubber process analyzer (RPA) at small (approximately 7%) and large (approximately 42%) strain in order to discriminate the effects of filler–filler and filler–polymer interactions on the marching modulus of silica-filled rubber compounds. The results were interpreted via the correlation between these factors and their effect on the MMI. A higher temperature and a longer silanization time led to a better degree of silanization, in order of decreasing influence.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document