scholarly journals Use of mesoporous silica as a reinforcing agent in rubber compounds

e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Betty L. López ◽  
León Dario Pérez ◽  
Mónica Mesa ◽  
Ligia Sierra ◽  
Eric Devaux ◽  
...  

AbstractMesoporous silica is used as filler for styrene-butadiene rubber (SBR); filler-polymer interactions are compared with those exhibited when Ultrasil silica (VN3) is used. A silane coupling agent is added to improve filler dispersion and its influence on the bound-rubber formation is also investigated. The bound-rubber content is higher for the mesoporous silica and increases further for the sample containing silane. The increase is explained by chemical interactions between filler and rubber and penetration of the rubber chains into the mesopores. This is confirmed by 13C solid-state NMR, IR spectroscopy and differential scanning calorimetry. Dynamic mechanical thermal analysis shows higher storage modulus for the rubber filled with mesoporous silica.

2018 ◽  
Vol 91 (2) ◽  
pp. 453-468 ◽  
Author(s):  
Hong-Yuan Ren ◽  
Zheng Sun ◽  
Li-Qun Zhang ◽  
You-Ping Wu ◽  
Qiang Huang ◽  
...  

ABSTRACT Two silane coupling agents, bis-(γ-triethoxysilylpropyl)-tetrasulfide (Si69) and vinyltriethoxysilane (A151), were selected to investigate their effects on structure and properties of silica-filled methyl vinyl silicone rubber (VMQ)/emulsion styrene butadiene rubber (ESBR) composites. The filler–rubber interactions were investigated via bound rubber content and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy, and the mass ratio of VMQ and ESBR in the rubber–filler gel was investigated by thermogravimetric analysis (TGA). The results revealed that VMQ showed a better compatibility with silica than ESBR. Compared with the A151 composite, the composite with Si69 showed the higher content of ESBR in rubber–filler gel, which resulted in the higher bound rubber content and the weaker Payne effect, and it also exhibited higher tensile strength, higher tear strength, better wear resistance, and lower hardness. However, the presence of Si69 reduced the crosslink efficiency of ESBR and completely inhibited the crosslinking of VMQ, which caused the composite to show higher tan δ value at 60 °C than the A151 composite.


2019 ◽  
pp. 000-000
Author(s):  
Qing-Yuan Han ◽  
Xu Li ◽  
Yu-Chun Li ◽  
You-Ping Wu

ABSTRACT The compatibility between solution polymerized styrene–butadiene rubber (SSBR 2466) and natural rubber (NR) is characterized by differential scanning calorimetry and dynamic mechanical thermal analysis. The single glass transition in the entire temperature range of all NR/SSBR blends and good correlation between Tg and SSBR fraction prove the excellent compatibility between SSBR 2466 and NR. With increasing SSBR content, a reduced Payne effect, more homogeneous dispersion of silica, stronger rubber–filler interaction, and more silica selectively distributed in the SSBR phase were determined via rubber-processing analysis, transmission electron microscopy, bound rubber, and thermogravimetric analysis, respectively. The high vinyl content, low styrene content, and end-functionalized structure of SSBR play vital roles in promoting its compatibility with NR and a stronger rubber–silica linkage. The resulting increased tan δ at 0 °C and low tan δ at 60 °C indicates good wet-skid resistance and low rolling resistance by blending SSBR 2466, and 70/30 NR/SSBR is the best balance for producing a “green tire” tread.


2020 ◽  
Vol 13 (1) ◽  
pp. 1-5
Author(s):  
Patrik Macúrik ◽  
Rafal Anyszka ◽  
Ivan Hudec ◽  
Terézia Malčeková ◽  
Ján Kruželák

AbstractThe study was focused on the investigation of trans-polyoctylene (TOR) influence on cross-linking as well as mechanical and rheological properties of rubber compounds based on styrene-butadiene rubber (SBR). SBR was compounded with different proportions of TOR in the concentration range from 0 to 30 phr. Integration of TOR into rubber leads to the prolongation of the optimum curing time and scorch time and thus the decrease of the curing rate. Higher content of TOR led to less viscous rubber due to the plasticizing effect. Cross-link density of vulcanizates was reduced, which correlates with higher elongation at break. Tensile strength and hardness of vulcanizates increased with the increasing TOR content, probably due to the increasing amount of the crystalline phase.


2020 ◽  
Vol 856 ◽  
pp. 169-174
Author(s):  
Chatchatree Thongsaen ◽  
Pongdhorn Sea-Oui ◽  
Chakrit Sirisinha

Solution styrene-butadiene rubber (SSBR) reinforced by hybrid fillers of carbon black (CB) and silica (PSi) was prepared with various CB/PSi ratios. Rheological and mechanical properties of rubber compounds and vulcanisates were investigated. Results of compounds demonstrate that, with increasing CB fraction, increases in the magnitude of the Payne effect and Mooney viscosity were found. On the contrary, with increased loading of PSi, increases in optimum cure time (tc90) and cure torque difference were evidenced. The results suggest superiority in filler dispersion level and cure efficiency in the systems filled with high PSi fraction due to the presence of Bis [3-(triethoxysilyl) propyl] tetrasulphide (TESPT or Si-69) as a silane coupling agent. As for vulcanisate properties, the systems with increased PSi fraction exhibit enhancement in mechanical strength and elastic contribution, which are in good agreement with rubber compound properties. Also, the decrease in loss factor at 60 °C was observed with increasing PSi fraction, suggesting the desirable reduction in rolling resistance of tyre tread.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 209 ◽  
Author(s):  
Jungmin Jin ◽  
Jacques W. M. Noordermeer ◽  
Wilma K. Dierkes ◽  
Anke Blume

Marching modulus phenomena are often observed in silica-reinforced solution styrene–butadiene rubber/butadiene rubber (S-SBR/BR) tire tread compounds. When such a situation happens, it is difficult to determine the optimum curing time, and as a consequence the physical properties of the rubber vulcanizates may vary. Previous studies have demonstrated that the curing behavior of silica compounds is related to the degree of silanization. For the present work, the effect of silanization temperature and time on the marching modulus of silica-filled rubber was evaluated. The correlations between these mixing parameters and their effect on the factors that have a strong relation with marching modulus intensity (MMI) were investigated: the amount of bound rubber, the filler flocculation rate (FFR), and the filler–polymer coupling rate (CR). The MMI was monitored by measuring the vulcanization rheograms using a rubber process analyzer (RPA) at small (approximately 7%) and large (approximately 42%) strain in order to discriminate the effects of filler–filler and filler–polymer interactions on the marching modulus of silica-filled rubber compounds. The results were interpreted via the correlation between these factors and their effect on the MMI. A higher temperature and a longer silanization time led to a better degree of silanization, in order of decreasing influence.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document