A novel cytokine belonging to the IL-10 gene family affects human monocytes and T cells

1997 ◽  
Vol 56 ◽  
pp. 211
Author(s):  
R. de Waal Malefyt ◽  
J.F. Bazan ◽  
S. Zurawski ◽  
R.A. Kastelein
Keyword(s):  
T Cells ◽  
Cytokine ◽  
2012 ◽  
Vol 59 (3) ◽  
pp. 550
Author(s):  
S. Ferrari-Lacraz ◽  
M. Sebbag ◽  
R. Chicheportiche ◽  
C. Foulquier ◽  
G. Serre ◽  
...  

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1259-1261
Author(s):  
J Horiguchi ◽  
MK Warren ◽  
D Kufe

The macrophage-specific colony-stimulating factor (CSF-1, M-CSF) regulates the survival, growth and differentiation of monocytes. We have recently demonstrated that phorbol ester induces expression of CSF- 1 in human monocytes. These findings suggested that activated monocytes are capable of producing their own lineage-specific CSF. The present studies demonstrate that the granulocyte-macrophage colony-stimulating factor (GM-CSF) also induces CSF-1 transcripts in monocytes. Furthermore, we demonstrate that the detection of CSF-1 RNA in GM-CSF- treated monocytes is associated with synthesis of the CSF-1 gene product. The results thus suggest that GM-CSF may indirectly control specific monocyte functions through the regulation of CSF-1 production. These findings indicate another level of interaction between T cells and monocytes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Dong ◽  
Xi Yang ◽  
Yangyanqiu Wang ◽  
Yin Jin ◽  
Qing Zhou ◽  
...  

Background. T cell-mediated antitumor immune response is the basis of colorectal cancer (CRC) immunotherapy. Cholesterol plays an important role in T cell signal transduction and function. Apolipoprotein E (APOE) plays a major role in cholesterol metabolism. Objective. To screen and analyze key markers involved in the anticolon cancer response of CD8+ T cells through the regulation of cholesterol metabolism. Methods. Based on the median cutoff of the expression value of APOE according to the data downloaded from The Cancer Genome Atlas and Gene Expression Omnibus database, patients were grouped into low and high expression groups. Differences in clinical factors were assessed, and survival analysis was performed. Differentially expressed genes (DEGs) in the high and low expression groups were screened, followed by the analysis of differences in tumor-infiltrating immune cells and weighted gene coexpression network analysis results. The closely related genes to APOE were identified, followed by enrichment analysis, protein–protein interaction (PPI) network analysis, and differential expression analysis. Immunohistochemical staining (IHC) was used to detect the expression of CD8 in CRC tissues. Results. There were significant differences in prognosis and pathologic_N between the APOE low and high expression groups. A total of 2,349 DEGs between the high and low expression groups were selected. A total of 967 genes were obtained from the blue and brown modules. The probability of distribution of CD8+ T cells differed significantly between the two groups, and 320 closely related DEGs of APOE were screened. Genes including the HLA gene family, B2M, IRF4, and STAT5A had a higher degree in the PPI network. GEO datasets verified the prognosis and the related DEGs of APOE. IHC staining verified the relationship between the distribution of CD8+ T cells and APOE expression. Conclusion. Genes including the HLA gene family, B2M, IRF4, and STAT5A might be the key genes involved in the anticolon cancer response of CD8+ T cells through the regulation of cholesterol metabolism.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Kurtis M. Host ◽  
Sarah R. Jacobs ◽  
John A. West ◽  
Zhigang Zhang ◽  
Lindsey M. Costantini ◽  
...  

ABSTRACTKaposi’s sarcoma-associated herpesvirus (KSHV) is associated with the human malignancy Kaposi’s sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman’s disease. KSHV establishes lytic infection of monocytesin vivo, which may represent an important cellular reservoir during KS disease progression. KS tumors consist of latently infected endothelial cells; however, lytic phase gene products are important for KS onset. Early KS lesion progression is driven by proinflammatory cytokines supplied by immune cell infiltrates including T cells and monocytes. KSHV-infected monocytes may supply the lytic viral products and the inflammatory milieu conducive to KS tumor progression. To establish successful infection, KSHV extensively modulates the host immune system. KSHV antigens activate both innate and adaptive immune responses including KSHV-specific T cells, but lifelong infection is still established. Programmed death ligand 1 (PD-L1) is a prosurvival cell surface protein that suppresses T-cell-mediated killing. PD-L1 is variably present on various tumor cells and is a targetable marker for cancer treatment. We show that KSHV infection of human monocytes increases PD-L1 expression and transcription in a dose-dependent manner. We also saw evidence of lytic gene expression in the KSHV-infected monocytes. Intact KSHV is needed for full PD-L1 response in human monocytes. KSHV induces a general proinflammatory cytokine milieu including interleukins 1α, 1β, and 6, which have been implicated in early KS lesion progression. KSHV-mediated PD-L1 increase may represent a novel mechanism of KSHV-mediated immune modulation to allow for virus survival and eventually malignant progression.IMPORTANCEKSHV is the etiologic agent of Kaposi’s sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman’s disease. Programmed death ligand 1 (PD-L1) is an immunosuppressive cell surface marker that inhibits T cell activation. We report that KSHV infection of primary human monocytes upregulates PD-L1 transcription and protein expression. Analysis of the cytokine and chemokine milieu following KSHV infection of monocytes revealed that KSHV induces interleukins 1α, 1β, and 6, all of which have been implicated in KS development. Our work has identified another potential immune evasion strategy for KSHV and a potential target for immunotherapy of KSHV-derived disease.


2000 ◽  
Vol 118 (4) ◽  
pp. A110
Author(s):  
Subra Kugathasan ◽  
Angie R. Taras ◽  
Daniel J. Stein ◽  
Pamela J. Fisher ◽  
Thomas H. Lamirand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document