Bispecific antibody mediated T-cell activation and tumor cell killing: The role of the target antigen

1997 ◽  
Vol 56 ◽  
pp. 338
Author(s):  
A. Pfosser ◽  
M. Brandl ◽  
W. Wilmanns ◽  
G. Jung
2004 ◽  
Vol 101 (18) ◽  
pp. 6858-6863 ◽  
Author(s):  
L. Grosse-Hovest ◽  
S. Muller ◽  
R. Minoia ◽  
E. Wolf ◽  
V. Zakhartchenko ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A885-A885
Author(s):  
Bithi Chatterjee ◽  
Daniel Snell ◽  
Daniel Snell ◽  
Christian Hess ◽  
Matthias Brock ◽  
...  

BackgroundReceptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed on a variety of difficult to treat solid and hematological malignancies. Several therapeutic concepts targeting ROR1 are currently in clinical studies, including antibody-drug conjugates (ADCs), chimeric antigen receptor engineered T cells, as well as a bispecific T cell engager. In contrast to ADCs, T cell engagers have the capacity to induce tumor cell depletion irrespective of tumor cell mitotic activity. For the therapy of ROR1 expressing tumors, we engineered a T cell engager with prolonged half-life to support convenient administration schemes.MethodsNM32-2668, a ROR1-targeting T cell engager with prolonged serum half-life was engineered by joining three humanized rabbit antibody variable region (Fv) fragments specific for ROR1, CD3ɛ, and serum albumin, into our tri-specific scMATCHTM3 format. Each Fv fragment was stabilized using the ʎ-capTM technology. NM32-2668 was tested in assays for specific tumor lysis, induction of T cell proliferation, and cytokine release. These studies were performed using human T cells co-cultured with tumor cell lines and human tumor samples expressing various levels of ROR1. In vivo xenograft mouse studies were conducted using a human mantle cell lymphoma model in NCG mice engrafted with human PBMCs.ResultsHere we report the design and the promising preclinical activity of the scMATCHTM3 ROR1/CD3/hSA T cell engager NM32-2668 in vitro and in vivo. Importantly, we demonstrate potent and specific cytotoxic activity in the sub-nanomolar range on tumor cell lines expressing different levels of ROR1. NM32-2668 also mediates ROR1 dependent T cell activation and cytokine release. We observe robust tumor cell killing activity of NM32-2668 over an extended time period and at multiple ratios of effectors to targets in a real time imaging-based cytotoxicity assay. This molecule also mediates T cell proliferation in response to target cell binding. NM32-2668 mediates in vitro lysis of CLL patient tumor cells, T cell activation, and cytokine release, with minimal IL-6 involvement. In an in vivo mantle cell lymphoma model (Jeko-1) engrafted with human PBMCs, we observe tumor regression and eradication.ConclusionsCollectively, these data demonstrate robust anti-tumor efficacy by NM32-2668, a scMATCHTM3 ROR1/CD3/hSA. Our results demonstrate that NM32-2668 promotes ROR1 dependent T cell activation and proliferation, as well as T cell-mediated tumor cell lysis. The activity of NM32-2668 has the potential to provide significant benefit to patients with ROR1+ malignancies on a convenient dosing schedule. We intend to rapidly progress NM32-2668 to clinical development.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 60-60
Author(s):  
Ben Buelow ◽  
Priya Choudhry ◽  
Starlynn Clarke ◽  
Kevin Dang ◽  
Laura Davison ◽  
...  

60 Background: T-cell engaging bispecific antibody (T-BsAb) therapies are highly efficacious and well suited for targets with low expression on tumor cells. Recently, T-BsAbs with high activation of CD3 have been shown to overstimulate T cells, leading to toxicity and decreased efficacy. Teneobio has developed a fully human BCMA-specific T-BsAb using a low-activating αCD3 that is highly effective in vitro and in vivo against MM but stimulates minimal cytokine release. Methods: UniRats were immunized with either CD3 or BCMA antigens and antigen-specific UniAbs were identified by Ab repertoire sequencing and high-throughput gene assembly, expression, and screening. Antigen-specific VH sequences with the desired target affinity were selected using recombinant proteins and cells. In vitro efficacy studies included T-cell activation by cytokine- and tumor cell kill by calcein-release assays. In vivo efficacy of the molecules was evaluated in NSG mice harboring myeloma cells and human PBMCs. Results: BCMA-specific UniAbs bound plasma cells with sub-nM affinity. Strong and weak T cell agonists were identified that bound human T cells with high and low affinities respectively. T-BsAbs with a strong and a weak αCD3 demonstrated T-cell activation and tumor-cell cytotoxicity in vitro; T-BsAbs with a weak αCD3 showed markedly reduced cytokine production even at doses that showed maximum tumor cell lysis. In vivo, BCMAxCD3 T-BsAbs reduced tumor load and increased survival when co-administered with human PBMCs as compared to controls. Conclusions: Our results suggest that T-BsAbs with low-activating αCD3 arms may have a favorable toxicity profile while maintaining efficacy in the treatment of MM.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A690-A690
Author(s):  
Gabrielle Leclercq ◽  
Helene Haegel ◽  
Anneliese Schneider ◽  
Estelle Marrer Berger ◽  
Antje Walz ◽  
...  

BackgroundT cell bispecific antibodies (TCBs) are extremely potent T cell engagers, harboring a 2+1 format with one binder to the CD3ε chain and two binders to specific tumor antigens. Crosslinking of CD3 with tumor antigens triggers T cell activation, proliferation and cytokine release, leading to tumor cell killing.1 2 TCB treatment is sometimes associated with safety liabilities due to on-target on-tumor, on-target off-tumor cytotoxic activity and cytokine release. Patients treated with TCBs may experience a Cytokine Release Syndrome (CRS), characterized by fever, hypotension and respiratory deficiency and associated with the release of pro-inflammatory cytokines such as IL-6, TNF-α, IFN-γ, and IL-1β.3 Off-tumor toxicity may occur if target antigens are expressed in healthy cells, which may potentially result in tissue damages and compromise the patient‘s safety. Rapid pharmacological blockade of T cell activation and proliferation is a promising approach to mitigate these life-threatening toxicities. Tyrosine kinases such as SRC, LCK or ZAP70 are involved in downstream signaling pathways after engagement of the T cell receptor and blocking these kinases might serve to abrogate T cell activation when required. Dasatinib was identified as a potent candidate that switches off CAR T cell functionality.4 5MethodsUsing an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the reversible effects of dasatinib combined with CEA-TCB or HLA-A2-WT1-TCB on T cell activation and proliferation, target cell killing and cytokine release. At assay endpoints, T cell phenotype and target cell killing were measured by flow cytometry and supernatants were analyzed by Luminex to assess cytokine release. To determine the effective dose of dasatinib, the Incucyte system was used to follow kinetics of target cells killing by TCB in the presence of a dose response of dasatinib concentrations.Results100 nM dasatinib prevented TCB-mediated target cell killing when added in the system upon restimulation of activated T cells (figure 1). Dasatinib concentrations above 50 nM fully switched off target cell killing (figure 2) which was restored upon removal of dasatinib. These data confirm that dasatinib act as a potent and reversible on/off switch for activated T cells at pharmacologically relevant doses as they are applied in patients according to the label.6ConclusionsTaken together, we provide evidence for the use of dasatinib as a pharmacological on/off switch to mitigate off-tumor toxicities or CRS by T cell engaging therapies. These data are being validated in vivo.ReferencesBacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, et al. A novel carcinoembryonic antigen T-Cell Bispecific Antibody [CEA TCB] for the treatment of solid tumors. Clin Cancer Res 2016;22(13):3286–97.Bacac M, Klein C, Umana P. CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. Oncoimmunology 2016;5(8):e1203498.Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer 2018;6(1):56.Weber EW, Lynn RC, Sotillo E, Lattin J, Xu P, Mackall CL. Pharmacologic control of CAR-T cell function using dasatinib. Blood Advances 2019;3(5):711–7.Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science Translational Medicine 2019;11(499):eaau5907.Wang X, Roy A, Hochhaus A, Kantarjian HM, Chen TT, Shah NP. Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure-response analysis of a Phase III study. Clinical pharmacology : advances and applications 2013;5:85–97.Abstract 653 Figure 1Representative flow cytometry experiment reporting SKM-1 target cell viability upon first stimulation with 10 nM HLA-A2 WT-1-TCB in the absence of dasatinib (left pannel) and upon second stimulation with 10 nM HLA-A2 WT-1-TCB in the presence of 100 nM dasatinib (right pannel)Abstract 653 Figure 2Real time killing (Incucyte) of red fluorescent A375 cells loaded with RMF peptides by 10 nM HLA-A2 WT-1-TCB (left pannel) and of red fluorescent MKN45 cells by 1 nM CEA-TCB (right pannel) in the presence of different dasatinib concentrations ranging from 100 nM to 0 nM. Mean of technical duplicates + SEM


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A431-A431
Author(s):  
Michael Yellin ◽  
Tracey Rawls ◽  
Diane Young ◽  
Philip Golden ◽  
Laura Vitale ◽  
...  

BackgroundCD27 ligation and PD-1 blockade elicit complementary signals mediating T cell activation and effector function. CD27 is constitutively expressed on most mature T cells and the interaction with its ligand, CD70, plays key roles in T cell costimulation leading to activation, proliferation, enhanced survival, maturation of effector capacity, and memory. The PD-1/PD-L1 pathway plays key roles in inhibiting T cell responses. Pre-clinical studies demonstrate synergy in T cell activation and anti-tumor activity when combining a CD27 agonist antibody with PD-(L)1 blockade, and clinical studies have confirmed the feasibility of this combination by demonstrating safety and biological and clinical activity. CDX-527 is a novel human bispecific antibody containing a neutralizing, high affinity IgG1k PD-L1 mAb (9H9) and the single chain Fv fragment (scFv) of an agonist anti-CD27 mAb (2B3) genetically attached to the C-terminus of each heavy chain, thereby making CDX-527 bivalent for each target. Pre-clinical studies have demonstrated enhanced T cell activation by CDX-527 and anti-tumor activity of a surrogate bispecific compared to individual mAb combinations, and together with the IND-enabling studies support the advancement of CDX-527 into the clinic.MethodsA Phase 1 first-in-human, open-label, non-randomized, multi-center, dose-escalation and expansion study evaluating safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of CDX-527 is ongoing. Eligible patients have advanced solid tumor malignancies and have progressed on standard-of-care therapy. Patients must have no more than one prior anti-PD-1/L1 for tumor types which have anti-PD-1/L1 approved for that indication and no prior anti-PD-1/L1 for tumor types that do not have anti-PD-1/L1 approved for that indication. CDX-527 is administered intravenously once every two weeks with doses ranging from 0.03 mg/kg up to 10.0 mg/kg or until the maximum tolerated dose. The dose-escalation phase initiates with a single patient enrolled in cohort 1. In the absence of a dose limiting toxicity or any ≥ grade 2 treatment related AE, cohort 2 will enroll in a similar manner as cohort 1. Subsequent dose-escalation cohorts will be conducted in 3+3 manner. In the tumor-specific expansion phase, up to 4 individual expansion cohort(s) of patients with specific solid tumors of interest may be enrolled to further characterize the safety, PK, PD, and efficacy of CDX 527. Tumor assessments will be performed every 8-weeks by the investigator in accordance with iRECIST. Biomarker assessments will include characterizing the effects on peripheral blood immune cells and cytokines, and for the expansion cohorts, the impact of CDX-527 on the tumor microenvironment.ResultsN/AConclusionsN/ATrial RegistrationNCT04440943Ethics ApprovalThe study was approved by WIRB for Northside Hospital, approval number 20201542


Sign in / Sign up

Export Citation Format

Share Document