mycobacterial antigen
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 25)

H-INDEX

38
(FIVE YEARS 2)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 87
Author(s):  
Gokul Raj Kathamuthu ◽  
Nathella Pavan Kumar ◽  
Kadar Moideen ◽  
Chandrakumar Dolla ◽  
Paul Kumaran ◽  
...  

Mucosal-associated invariant T (MAIT) cells are innate like, and play a major role in restricting disease caused by Mycobacterium tuberculosis (Mtb) disease before the activation of antigen-specific T cells. Additionally, the potential link and synergistic function between diabetes mellitus (DM) and tuberculosis (TB) has been recognized for a long time. However, the role of MAIT cells in latent TB (LTB) DM or pre-DM (PDM) and non-DM (NDM) comorbidities is not known. Hence, we examined the frequencies (represented as geometric means, GM) of unstimulated (UNS), mycobacterial (purified protein derivative (PPD) and whole-cell lysate (WCL)), and positive control (phorbol myristate acetate (P)/ionomycin (I)) antigen stimulated MAIT cells expressing Th1 (IFNγ, TNFα, and IL-2), Th17 (IL-17A, IL-17F, and IL-22), and cytotoxic (perforin (PFN), granzyme (GZE B), and granulysin (GNLSN)) markers in LTB comorbidities by uniform manifold approximation (UMAP) and flow cytometry. We also performed a correlation analysis of Th1/Th17 cytokines and cytotoxic markers with HbA1c, TST, and BMI, and diverse hematological and biochemical parameters. The UMAP analysis demonstrated that the percentage of MAIT cells was higher; T helper (Th)1 cytokine and cytotoxic (PFN) markers expressions were different in LTB-DM and PDM individuals in comparison to the LTB-NDM group on UMAP. Similarly, no significant difference was observed in the geometric means (GM) of MAIT cells expressing Th1, Th17, and cytotoxic markers between the study population under UNS conditions. In mycobacterial antigen stimulation, the GM of Th1 (IFNγ (PPD and WCL), TNFα (PPD and WCL), and IL-2 (PPD)), and Th17 (IL-17A, IL-17F, and IL-22 (PPD and/or WCL)) cytokines were significantly elevated and cytotoxic markers (PFN, GZE B, and GNLSN (PPD and WCL)) were significantly reduced in the LTB-DM and/or PDM group compared to the LTB-NDM group. Some of the Th1/Th17 cytokines and cytotoxic markers were significantly correlated with the parameters analyzed. Overall, we found that different Th1 cytokines and cytotoxic marker population clusters and increased Th1 and Th17 (IL-17A, IL-22) cytokines and diminished cytotoxic markers expressing MAIT cells are associated with LTB-PDM and DM comorbidities.


2021 ◽  
Author(s):  
Joann Diray-Arce ◽  
Asimenia Angelidou ◽  
Kristoffer Jarlov Jensen ◽  
Maria Giulia Conti ◽  
Rachel S. Kelly ◽  
...  

SummaryVaccines have generally been developed with limited insight into their molecular impact. While systems vaccinology, including metabolomics, enables new characterization of vaccine mechanisms of action, these tools have yet to be applied to infants at high risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) protects infants against disseminated tuberculosis (TB) and TB-unrelated infections via incompletely understood mechanisms. We employed mass spectrometry-based metabolomics of blood plasma to profile BCG-induced infant responses in Guinea Bissau in vivo and the U.S. in vitro. BCG selectively altered plasma lipid pathways, including lysophospholipids. BCG-induced lysophosphatidylcholines (LPCs) correlated with both TLR agonist- and purified protein derivative (PPD, mycobacterial antigen)-induced blood cytokine production in vitro, raising the possibility that LPCs contribute to BCG immunogenicity. Analysis of an independent newborn cohort from The Gambia demonstrated shared vaccine-induced metabolites such as phospholipids and sphingolipids. BCG-induced changes to the plasma lipidome and LPCs may contribute to its immunogenicity and inform the discovery and development of early life vaccines.HighlightsNeonatal BCG immunization generates distinct metabolic shifts in vivo and in vitro across multiple independent cohorts.BCG induces prominent changes in concentrations of plasma lysophospholipids (LPLs)BCG induced changes in plasma lysophosphatidylcholines (LPCs) correlate with BCG effects on TLR agonist- and mycobacterial antigen-induced cytokine responses.Characterization of vaccine-induced changes in metabolism may define predictive signatures of vaccine responses and inform early life vaccine development.Abstract FigureGraphical abstract:BCG vaccination perturbs metabolic pathways in vivo and in vitro.Vaccines have traditionally been developed empirically, with limited insight into their impact on molecular pathways. Metabolomics provides a new approach to characterizing vaccine mechanisms but has not yet been applied to human newborns, who are at the highest risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) prevents disseminated mycobacterial disease in children and can induce broad protection to reduce mortality due to non-TB infections. Underlying mechanisms are incompletely characterized. Employing mass spectrometry-based metabolomics, we demonstrate that early BCG administration alters the human neonatal plasma metabolome, especially lipid metabolic pathways such as lysophosphatidylcholines (LPCs), both in vivo and in vitro. Plasma LPCs correlated with both innate TLR-mediated and PPD antigen-induced cytokine responses suggesting that BCG-induced lipids might contribute to the immunogenicity of this vaccine. Vaccine-induced metabolic changes may provide fresh insights into vaccine immunogenicity and inform the discovery and development of early life vaccines.


Author(s):  
Robert E. E. Brown ◽  
Robert L Hunter

The characteristic lesion of primary tuberculosis is the granuloma as is widely studied in human tissues and animal models. Post-primary tuberculosis is different. It develops only in human lungs and begins as a prolonged subclinical obstructive lobular pneumonia that slowly accumulates mycobacterial antigens and host lipids in alveolar macrophages with nearby highly sensitized T cells. After several months, the lesions undergo necrosis to produce a mass of caseous pneumonia large enough to fragment and be coughed out to produce a cavity or be retained as the focus of a post-primary granuloma. Here we extend these findings with the demonstration of mycobacterial antigen, but not AFB, of M. tuberculosis in the cytoplasm of ciliated bronchiolar epithelium and alveolar pneumocytes in association with elements of the programmed death ligand 1 (PD-L1), cyclo-oxygenase (COX)-2, and fatty acid synthase (FAS) pathways in the early lesion. This suggests that M. tuberculosis uses its secreted antigens to coordinate prolonged subclinical development of the early le-sions in preparation for a necrotizing reaction sufficient to produce a cavity, post-primary granulomas and fibrocaseous disease.


Author(s):  
Robert E. E. Brown ◽  
Robert L Hunter

The characteristic lesion of primary tuberculosis is the granuloma as is widely studied in human tissues and animal models. Post-primary tuberculosis is different. It develops only in human lungs and begins as a prolonged subclinical obstructive lobular pneumonia that slowly accumulates mycobacterial antigens and host lipids in alveolar macrophages with nearby highly sensitized T cells. After several months, the lesions under necrosis to produce a mass of caseous pneumonia large enough to fragment and be coughed out to produce a cavity or be retained as the focus of a post-primary granuloma. Here we extend these findings with the demonstration of mycobacterial antigen, but not AFB, of M. tuberculosis in the cytoplasm of ciliated bronchiolar epithelium and alveolar pneumocytes in association with elements of the programmed death ligand 1 (PD-L1), cyclo-oxygenase (COX)-2, and fatty acid synthase (FAS) pathways in the early lesion. This suggests that M. tuberculosis use its secreted antigens to coordinate prolonged subclinical development of the early lesions in preparation for a necrotizing reaction sufficient to produce a cavity, post-primary granulomas and fibrocaseous disease


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2060
Author(s):  
Shuxiong Chen ◽  
Diana H. Quan ◽  
Xiaonan T. Wang ◽  
Sarah Sandford ◽  
Joanna R. Kirman ◽  
...  

Currently available vaccines fail to provide consistent protection against tuberculosis (TB). New, improved vaccines are urgently needed for controlling the disease. The mycobacterial antigen fusions H4 (Ag85B-TB10.4) and H28 (Ag85B-TB10.4-Rv2660c) have been shown to be very immunogenic and have been considered as potential candidates for TB vaccine development. However, soluble protein vaccines are often poorly immunogenic, but augmented immune responses can be induced when selected antigens are delivered in particulate form. This study investigated whether the mycobacterial antigen fusions H4 and H28 can induce protective immunity when assembled into particulate vaccines (polyester nanoparticle-H4, polyester nanoparticle-H28, H4 nanoparticles and H28 nanoparticles). The particulate mycobacterial vaccines were assembled inside an engineered endotoxin-free production strain of Escherichia coli at high yield. Vaccine nanoparticles were purified and induced long-lasting antigen-specific T cell responses and protective immunity in mice challenged by aerosol with virulent Mycobacterium tuberculosis. A significant reduction of M. tuberculosis CFU, up to 0.7-log10 protection, occurred in the lungs of mice immunized with particulate vaccines in comparison to placebo-vaccinated mice (p < 0.0001). Polyester nanoparticles displaying the mycobacterial antigen fusion H4 induced a similar level of protective immunity in the lung when compared to M. bovis bacillus Calmette-Guérin (BCG), the currently approved TB vaccine. The safe and immunogenic polyester nanoparticle-H4 vaccine is a promising subunit vaccine candidate, as it can be cost-effectively manufactured and efficiently induces protection against TB.


2021 ◽  
Vol 2 (8) ◽  
pp. 100372
Author(s):  
Arshad Khan ◽  
Ekramy E. Sayedahmed ◽  
Vipul K. Singh ◽  
Abhishek Mishra ◽  
Stephanie Dorta-Estremera ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Farida Benhadou ◽  
Violette Dirix ◽  
Fanny Domont ◽  
Fabienne Willaert ◽  
Anne Van Praet ◽  
...  

Psoriasis is a skin inflammatory condition for which significant progress has been made in its management by the use of targeted biological drugs. Detection of latent M. tuberculosis infection (LTBI) is mandatory before starting biotherapy that is associated with reactivation risk. Together with evaluation of TB risk factors and chest radiographs, tuberculin skin tests (TST) and/or blood interferon-γ-release assays (IGRA), like the QuantiFERON (QFT), are usually performed to diagnose M. tuberculosis infection. Using this approach, 14/49 psoriatic patients prospectively included in this study were identified as LTBI (14 TST+, induration size ≥ 10mm, 8 QFT+), and 7/14 received prophylactic anti-TB treatment, the other 7 reporting past-treatment. As the specificity and sensitivity of these tests were challenged, we evaluated the added value of an IGRA in response to a mycobacterial antigen associated with latency, the heparin-binding haemagglutinin (HBHA). All but one TST+ patient had a positive HBHA-IGRA, indicating higher sensitivity than the QFT. The HBHA-IGRA was also positive for 12/35 TST-QFT- patients. Measurement for 15 psoriatic patients (12 with HBHA-IGRA+) of 8 chemokines in addition to IFN-γ revealed a broad array of HBHA-induced chemokines for TST+QFT- and TST-QFT- patients, compared to a more restricted pattern for TST+QFT+ patients. This allowed us to define subgroups within psoriatic patients characterized by different immune responses to M. tuberculosis antigens that may be associated to different risk levels of reactivation of the infection. This approach may help in prioritizing patients who should receive prophylactic anti-TB treatment before starting biotherapies in order to reduce their number.


Author(s):  
Meena S ◽  
◽  
Goutam P ◽  
Meena LS ◽  
◽  
...  

The only vaccine available for the deadly disease tuberculosis is Bacillus- Calmette-Guerin (BCG), which is an attenuated vaccine of Mycobacterium bovis. Although this vaccine boosts immune response but it is effective only for 10-20 years, after this there is need to develop immunity against Mycobacterium tuberculosis H37Rv (M. tuberculosis). As the vaccine is botched to provide sustained effects and to protect against disseminated forms of Tuberculosis (TB), it needs a component to heighten antigen specific immune reactions when used in combination with particular vaccine antigens that can also modulate the immune responses to an antigen to advance them. Adjuvants are the one such factor that can be used in vaccines to crack such problems. Many vaccines are under clinical trials in which subunit vaccine has taken attention because they are safer and can be standardized. There are many adjuvants which have been tested in combinations with BCG to increase the activity of vaccine. Mycobacterial antigen 85 A, B, C, present at outer part of cell wall and have great potential as therapeutic approach towards tuberculosis. MPT64 increases T-cell response in tuberculosis patients but there are less evidence about the role of this secreted mycobacterial protein in patients. ESAT 6 is effective T cell antigen and also pore forming toxin which is crucial for the virulence of bacterium. ESAT 6 separately or in compound form with its chaperone CFP- 10 form, regulates host immune response. They efficiently modify innate and adaptive immune response. This review provides an insight in the direction of the vaccine development on the basis of pre-existing credentials.


Sign in / Sign up

Export Citation Format

Share Document