Mechanisms by which measles virus induce chemokine RANTES gene in U373 cells derived from a human astrocytoma

1998 ◽  
Vol 90 (1) ◽  
pp. 25
Author(s):  
K.H. Noe ◽  
M.L. Shin
1999 ◽  
Vol 73 (4) ◽  
pp. 3117-3124 ◽  
Author(s):  
Katherine H. Noe ◽  
Cristina Cenciarelli ◽  
Sue A. Moyer ◽  
Paul A. Rota ◽  
Moon L. Shin

ABSTRACT Interferons and chemokines play a critical role in regulating the host response to viral infection. Measles virus, a member of theParamyxoviridae family, induces RANTES expression by astrocytes. We have examined the mechanism of this induction in U373 cells derived from a human astrocytoma. RANTES was induced in a dose- and time-dependent manner by measles virus infection. Inhibition of receptor binding by the anti-CD46 antibody TRA-2.10 and of virus-membrane fusion by the tripeptide X-Phe-Phe-Gly reduced RANTES expression. Formalin-inactivated virus, which can bind but not fuse, and extensively UV-irradiated virus, which can bind and fuse, were both ineffective. Therefore, virus binding to the cellular receptor CD46 and subsequent membrane fusion were necessary, but not sufficient, to induce RANTES. UV irradiation of virus for less than 10 min proportionally inhibited viral transcription and RANTES expression. RANTES induction was decreased in infected cells treated with ribavirin, which inhibits measles virus transcription. However, RANTES mRNA was superinduced by measles virus in the presence of cycloheximide. These data suggest that partial transcription of the viral genome is sufficient and necessary for RANTES induction, whereas viral protein synthesis and replication are not required. This hypothesis was supported by the fact that RANTES was induced through transient expression of the measles virus nucleocapsid gene but not by measles genes encoding P or L proteins or by leader RNA in A549 cells. Thus, transcription of specific portions of measles virus RNA, such as the nucleocapsid gene, appears able to generate the specific signaling required to induce RANTES gene expression.


2018 ◽  
Vol 38 (6) ◽  
pp. 3501-3505 ◽  
Author(s):  
HALINA JURKOWSKA ◽  
MARIA WRÓBEL
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Liliana Germán-Castelán ◽  
Joaquín Manjarrez-Marmolejo ◽  
Aliesha González-Arenas ◽  
María Genoveva González-Morán ◽  
Ignacio Camacho-Arroyo

Progesterone (P4) promotes cell proliferation in several types of cancer, including brain tumors such as astrocytomas, the most common and aggressive primary intracerebral neoplasm in humans. In this work, we studied the effects of P4and its intracellular receptor antagonist, RU486, on growth and infiltration of U373 cells derived from a human astrocytoma grade III, implanted in the motor cortex of adult male rats, using two treatment schemes. In the first one, fifteen days after cells implantation, rats were daily subcutaneously treated with vehicle (propylene glycol, 160 μL), P4(1 mg), RU486 (5 mg), or P4+ RU486 (1 mg and 5 mg, resp.) for 21 days. In the second one, treatments started 8 weeks after cells implantation and lasted for 14 days. In both schemes we found that P4significantly increased the tumor area as compared with the rest of the treatments, whereas RU486 blocked P4effects. All rats treated with P4showed tumor infiltration, while 28.6% and 42.9% of the animals treated with RU486 and P4+ RU486, respectively, presented it. Our data suggest that P4promotes growth and migration of human astrocytoma cells implanted in the motor cortex of the rat through the interaction with its intracellular receptor.


Author(s):  
Hannah R. Brown ◽  
Anthony F. Nostro ◽  
Halldor Thormar

Subacute sclerosing panencephalitis (SSPE) is a slowly progressing disease of the CNS in children which is caused by measles virus. Ferrets immunized with measles virus prior to inoculation with the cell associated, syncytiogenic D.R. strain of SSPE virus exhibit characteristics very similar to the human disease. Measles virus nucleocapsids are present, high measles antibody titers are found in the sera and inflammatory lesions are prominent in the brains. Measles virus specific immunoglobulin G (IgG) is present in the brain,and IgG/ albumin ratios indicate that the antibodies are synthesized within the CNS.


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


Author(s):  
R. M. McCombs ◽  
M. Benyesh-Melnick ◽  
J. P. Brunschwig

Measles virus is an agent that is capable of replicating in a number of different culture cells and generally causes the formation of multinucleated giant cells. As a result of infection, virus is released from the cells into the culture fluids and reinfection can be initiated by this cell-free virus. The extracellular virus has been examined by negative staining with phosphotungstic acid and has been shown to be a rather pleomorphic particle with a diameter of about 140 mμ. However, no such virus particles have been detected in thin sections of the infected cells. Rather, the only virus-induced structures present in the giant cells are eosinophilic inclusions (intracytoplasmic or intranuclear). These inclusion bodies have been shown to contain helical structures, resembling the nucleocapsid observed in negatively stained preparations.


Sign in / Sign up

Export Citation Format

Share Document