scholarly journals Transformation pathways of 2,2-dimethyloxirane on aluminosilicates: The effects of catalyst structure and reaction conditions

Author(s):  
A. Fási ◽  
I. Pálinkó ◽  
A. Gömöry ◽  
I. Kiricsi
2015 ◽  
Vol 93 (7) ◽  
pp. 696-701 ◽  
Author(s):  
Hui Li ◽  
Yuanbin She ◽  
Haiyan Fu ◽  
Meijuan Cao ◽  
Jing Wang ◽  
...  

The synergistic effect of cyclohexane and cyclohexanone promoted synthesis of adipic acid catalyzed by [MnIIIT(p-Cl)PP]Cl with cyclohexane and cyclohexanone as co-reactants. The results showed that the conversions of cyclohexane and cyclohexanone were significantly enhanced because of the cyclohexanone synergistic effect, and the higher selectivity to adipic acid was obtained with dioxygen as an oxidant. The studies indicated that the co-oxidation of cyclohexane and cyclohexanone was influenced by the initial molar ratio of cyclohexanone and cyclohexane, catalyst structure, catalyst concentrations, and reaction conditions. The preliminary mechanism of the co-oxidation reaction of cyclohexane and cyclohexanone using [MnIIIT(p-Cl)PP]Cl as the catalyst was proposed.


2021 ◽  
Author(s):  
Jan Knudsen ◽  
Tamires Gallo ◽  
Virgínia Boix ◽  
Marie Strømsheim ◽  
Giulio D'Acunto ◽  
...  

Abstract Heterogeneous catalyst surfaces are highly dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts’ action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the time scales of the dynamic changes. Here we use the CO oxidation reaction over a Pd(100) surface exposed to pressures of 3 and 100 mbar of a CO + O2 gas mixture to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. For the CO oxidation reaction over Pd(100) our main finding is that that all surface phases – the CO-covered Pd surface, a surface oxide and a thick PdOx phase – catalyse the CO oxidation reaction, in dependence on the supply of gas phase reactants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Knudsen ◽  
Tamires Gallo ◽  
Virgínia Boix ◽  
Marie Døvre Strømsheim ◽  
Giulio D’Acunto ◽  
...  

AbstractHeterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts’ action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide.


Author(s):  
Aram L Bugaev ◽  
Oleg A. Usoltsev ◽  
Alexander Alexandrovich Guda ◽  
Kirill A. Lomachenko ◽  
Michela Brunelli ◽  
...  

Palladium-based catalysts are exploited in the industrial scale for selective hydrogenation of hydrocarbons. Formation of palladium carbide and hydride phases under reaction conditions changes the catalytic properties of the material,...


2013 ◽  
Vol 2 (5) ◽  
pp. 547-576 ◽  
Author(s):  
Peng Zhai ◽  
Geng Sun ◽  
Qingjun Zhu ◽  
Ding Ma

AbstractOne key goal of heterogeneous catalysis study is to understand the correlation between the catalyst structure and its corresponding catalytic activity. In this review, we focus on recent strategies to synthesize well-defined Fischer-Tropsch synthesis (FTS) nanostructured catalysts and their catalytic performance in FTS. The development of those promising catalysts highlights the potentials of nanostructured materials to unravel the complex and dynamic reaction mechanism, particularly under the in situ reaction conditions. The crucial factors associated with the catalyst compositions and structures and their effects on the FTS activities are discussed with an emphasis on the role of theoretical modeling and experimental results.


SynOpen ◽  
2017 ◽  
Vol 01 (01) ◽  
pp. 0097-0102 ◽  
Author(s):  
Nicholas Boekell ◽  
Dana Cerone ◽  
Maria Boucher ◽  
Phong Quach ◽  
Wilfried Tentchou Nganyak ◽  
...  

Triarylmethyl cations serve as tunable organocatalysts for the synthesis of bisindolylmethanes. The catalyst structure can be modified to increase or decrease reactivity as needed to match the requirements of the substrate. High yields are achieved for a variety of substrates by using these green catalysts. Catalyst tuning allows for the use of less reactive electrophiles by increasing the reactivity of the catalyst. Acid-sensitive products can be isolated under these mild reaction conditions.


2001 ◽  
Vol 42 (45) ◽  
pp. 8093-8096 ◽  
Author(s):  
Yuri N Belokon’ ◽  
R.Gareth Davies ◽  
Jose A Fuentes ◽  
Michael North ◽  
Teresa Parsons

Author(s):  
Ilaria D'Auria ◽  
Zeinab Saki ◽  
Claudio Pellecchia

Nickel-based ethylene polymerization catalysts have unique features, being able to produce macromolecules with a variable content of branches, resulting in polymers ranging from semicrystalline plastics to elastomers to hyperbranched amorphous waxes and oils. In addition to Brookhart's α-diimine catalysts, iminopyridine Ni(II) complexes are among the most investigated systems. We report that Ni(II) complexes bearing aryliminopyridine ligands with bulky substituents both at the imino moiety and in the 6-position of pyridine afford either hyperbranched low molecular weight polyethylene oils or prevailingly linear crystalline polyethylenes or both depending on the ligand structure and the reaction conditions. The formation of multiple active species in situ is suggested by analysis of the post-polymerization catalyst residues, showing the partial reduction of the imino function. Some related arylaminopyridine Ni(II) complexes were also synthesized and tested, showing a peculiar behavior, i.e. the number of branches of the produced polyethylenes increases while ethylene pressure increases.


Sign in / Sign up

Export Citation Format

Share Document