scholarly journals OC-0030: In vitro study of FLASH vs. conventional dose-rate irradiation: Cell viability and DNA damage repair

2017 ◽  
Vol 123 ◽  
pp. S9-S10
Author(s):  
A. Beddok ◽  
C. Fouillade ◽  
E. Quelennec ◽  
V. Favaudon
2021 ◽  
Vol 12 ◽  
Author(s):  
Thangammal Anju ◽  
Radhakrishnan Preetha ◽  
Raja Shunmugam ◽  
Shivshankar R Mane ◽  
Jesu Arockiaraj ◽  
...  

INTRODUCTION: Rifampicin conjugated (R-CP), and rifampicin -isoniazid dual conjugated (RI-CP) norbornene-derived nanocarriers are newly designed for pH stimuli-responsive delivery of tuberculosis (TB) drugs. Its biosafety level is yet to be well established. OBJECTIVES: To assess the impacts of the nanocarriers on liver cells using zebrafish animal model and human liver cell line model (HepG2). METHODS: Initially, lethal dose concentration for the norbornene-derived nanocarrier systems in zebrafish was determined. The toxic effects were analysed at the sub-lethal drug concentration by histopathological study, total GSH level, gene expression and DNA damage in zebrafish liver cells. Fish erythrocyte nuclear abnormalities were also evaluated. Cell viability and oxidative stress level (ROS generation) after exposure to the nanoconjugates was determined using HepG2 cell in the in vitro study. RESULTS: In vivo studies of both R-CP and RI-CP showed 100% mortality at 96 hours for exposure concentration >100mg/l and showed toxic changes in zebrafish liver histology, GSH, and DNA damage levels. A noticeable upregulated PXR, CYP3A and cyp2p6 genes was observed in RI-CP exposure than in RIF or R-CP molecules. The in vitro study revealed a dose-dependent effect on cell viability and ROS generation for RIF, R-CP and RI-CP exposures in HepG2 cells. CONCLUSION: The current study reports that the rifampicin conjugated (R-CP) and rifampicin-isoniazid conjugated (RI-CP) norbornene derived nanocarriers exhibit enhanced toxic responses in both adult zebrafish and HepG2 cells. The pH-sensitive norbornene derived nanocarriers on conjugation with different drugs exhibited varied impacts on hepatic cells. Hence the present investigation recommends a complete metabolomics analysis and norbornene carrier-drug interaction study to be performed for each drug conjugated norbornene nanocarrier to ensure its biosafety.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav1118 ◽  
Author(s):  
Ming Tang ◽  
Zhiming Li ◽  
Chaohua Zhang ◽  
Xiaopeng Lu ◽  
Bo Tu ◽  
...  

The activation of ataxia-telangiectasia mutated (ATM) upon DNA damage involves a cascade of reactions, including acetylation by TIP60 and autophosphorylation. However, how ATM is progressively deactivated after completing DNA damage repair remains obscure. Here, we report that sirtuin 7 (SIRT7)–mediated deacetylation is essential for dephosphorylation and deactivation of ATM. We show that SIRT7, a class III histone deacetylase, interacts with and deacetylates ATM in vitro and in vivo. In response to DNA damage, SIRT7 is mobilized onto chromatin and deacetylates ATM during the late stages of DNA damage response, when ATM is being gradually deactivated. Deacetylation of ATM by SIRT7 is prerequisite for its dephosphorylation by its phosphatase WIP1. Consequently, depletion of SIRT7 or acetylation-mimic mutation of ATM induces persistent ATM phosphorylation and activation, thus leading to impaired DNA damage repair. Together, our findings reveal a previously unidentified role of SIRT7 in regulating ATM activity and DNA damage repair.


2019 ◽  
Vol 20 (19) ◽  
pp. 4728 ◽  
Author(s):  
Hwani Ryu ◽  
Hyun-Kyung Choi ◽  
Hyo Jeong Kim ◽  
Ah-Young Kim ◽  
Jie-Young Song ◽  
...  

Class III receptor tyrosine kinase (RTK) inhibitors targeting mainly FLT3 or c-KIT have not been well studied in lung cancer. To identify a small molecule potentially targeting class III RTK, we synthesized novel small molecule compounds and identified 5-(4-bromophenyl)-N-(naphthalen-1-yl) oxazol-2-amine (AIU2001) as a novel class III RKT inhibitor. In an in vitro kinase profiling assay, AIU2001 inhibited the activities of FLT3, mutated FLT3, FLT4, and c-KIT of class III RTK, and the proliferation of NSCLC cells in vitro and in vivo. AIU2001 induced DNA damage, reactive oxygen species (ROS) generation, and cell cycle arrest in the G2/M phase. Furthermore, AIU2001 suppressed the DNA damage repair genes, resulting in the ‘BRCAness’/‘DNA-PKness’ phenotype. The mRNA expression level of STAT5 was downregulated by AIU2001 treatment and knockdown of STAT5 inhibited the DNA repair genes. Our results show that compared to either drug alone, the combination of AIU2001 with a poly (ADP-ribose) polymerase (PARP) inhibitor olaparib or irradiation showed synergistic efficacy in H1299 and A549 cells. Hence, our findings demonstrate that AIU2001 is a candidate therapeutic agent for NSCLC and combination therapies with AIU2001 and a PARP inhibitor or radiotherapy may be used to increase the therapeutic efficacy of AIU2001 due to inhibition of DNA damage repair.


2020 ◽  
Vol 26 (3) ◽  
pp. 141-153
Author(s):  
Minhao Hu ◽  
Yiyun Lou ◽  
Shuyuan Liu ◽  
Yuchan Mao ◽  
Fang Le ◽  
...  

Abstract Our previous study revealed a higher incidence of gene dynamic mutation in newborns conceived by IVF, highlighting that IVF may be disruptive to the DNA stability of IVF offspring. However, the underlying mechanisms remain unclear. The DNA damage repair system plays an essential role in gene dynamic mutation and neurodegenerative disease. To evaluate the long-term impact of IVF on DNA damage repair genes, we established an IVF mouse model and analyzed gene and protein expression levels of MSH2, MSH3, MSH6, MLH1, PMS2, OGG1, APEX1, XPA and RPA1 and also the amount of H2AX phosphorylation of serine 139 which is highly suggestive of DNA double-strand break (γH2AX expression level) in the brain tissue of IVF conceived mice and their DNA methylation status using quantitative real-time PCR, western blotting and pyrosequencing. Furthermore, we assessed the capacity of two specific non-physiological factors in IVF procedures during preimplantation development. The results demonstrated that the expression and methylation levels of some DNA damage repair genes in the brain tissue of IVF mice were significantly changed at 3 weeks, 10 weeks and 1.5 years of age, when compared with the in vivo control group. In support of mouse model findings, oxygen concentration of in vitro culture environment was shown to have the capacity to modulate gene expression and DNA methylation levels of some DNA damage repair genes. In summary, our study indicated that IVF could bring about long-term alterations of gene and protein expression and DNA methylation levels of some DNA damage repair genes in the brain tissue and these alterations might be resulted from the different oxygen concentration of culture environment, providing valuable perspectives to improve the safety and efficiency of IVF at early embryonic stage and also throughout different life stages.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 418-418
Author(s):  
Jingyuan Wang ◽  
Joanne Xiu ◽  
Yasmine Baca ◽  
Richard M. Goldberg ◽  
Philip Agop Philip ◽  
...  

418 Background: Alteration of histone modifications participating in transcription and genomic instability, has been recognized as an important role in tumorigenesis. Aberrant expression of histone-lysine N-methyltransferase 2 ( KMT2) family, which methylate histone H3 on lysine 4, is significantly correlated with poor survival in GC. Understanding how gene mutations of KMT2 family interact to affect cancer progression could lead to new treatment strategies. Methods: A total of 1,245 GC were analyzed using next-generation sequencing (NGS) and immunohistochemistry (IHC; Caris Life Sciences, Phoenix, AZ). Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous mutations, and MSI status was evaluated by a combination of IHC, fragment analysis and NGS. PD-L1 status was analyzed by IHC (SP142). Gene fusions were detected by Archer (N = 59) or whole-transcriptome sequencing (N = 129). Results: The overall mutation rate of genes in KMT2 family was 10.6% ( KMT2A: 1.7 %, KMT2C: 4.7%, KMT2D: 7.1%). Overall, the mutation rates were significantly higher in KMT2-mutated (MT) GC than KMT2-wild type (WT) GC, except for TP53 (43% vs 63%, p < .0001). Interestingly, among the genes with significant higher mutation rates in KMT2-MT GC, 28% (21/76) of them were related to DNA damage repair (including BRCA1/ 2, RAD50) and 33% (25/76) of them were related to chromatin remodeling (including ARID1A/ 2, SMARCA4). Overexpression of HER2, amplifications of KRAS, CDK6 and HER2 were significant lower, while PCM1 and BCL3 amplifications were significant higher in KMT2-MT, compared to KMT2-WT GC ( p < .05). Significantly higher prevalence of TMB-high ( > 17mut/MB) (49% vs 3%), MSI-H (53% vs 2%), and PD-L1 overexpression (20% vs 7%) were present in KMT2-MT GC, compared to KMT2-WT GC ( p < .001). The rates of fusions involving ARHGAP26 (19% vs 3%, p < .01)and RELA (29% vs 0%, p < .0001) were significantly higher in KMT2-MT than those in KMT2-WT GC. Conclusions: This is the largest study to investigate the distinct genomic landscape between KMT2-MT and WT GC. Our data indicates that KMT2-MT GC patients could potentially benefit from agents targeting DNA damage repair and immunotherapy, which warrants further in-vitro and in-vivo investigation.


Sign in / Sign up

Export Citation Format

Share Document