PO-1758: Performance studies of an MR linear accelerator using a 3D-printed ball-bearing phantom

2020 ◽  
Vol 152 ◽  
pp. S978-S979
Author(s):  
H.L. Riis ◽  
B.C. Buthler ◽  
U. Bernchou ◽  
A.S. Bertelsen ◽  
S.N. Agergaard ◽  
...  
2018 ◽  
Vol 10 ◽  
pp. 721-726 ◽  
Author(s):  
Yeong-Jae Lee ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 43
Author(s):  
Elena Rubies ◽  
Jordi Palacín

This paper proposes the design and 3D printing of a compact omnidirectional wheel optimized to create a small series of three-wheeled omnidirectional mobile robots. The omnidirectional wheel proposed is based on the use of free-rotating passive wheels aligned transversally to the center of the main wheel and with a constant separation gap. This paper compares a three inner-passive wheels design based on mass-produced parts and 3D printed elements. The inner passive wheel that better combines weight, cost, and friction is implemented with a metallic ball bearing fitted inside a 3D printed U-grooved ring that holds a soft toric joint. The proposed design has been implemented using acrylonitrile butadiene styrene (ABS) and tough polylactic acid (PLA) as 3D printing materials in order to empirically compare the deformation of the weakest parts of the mechanical design. The conclusion is that the most critical parts of the omnidirectional wheel are less prone to deformation and show better mechanical properties if they are printed horizontally (with the axes that hold the passive wheels oriented parallel to the build surface), with an infill density of 100% and using tough PLA rather than ABS as a 3D printing material.


Author(s):  
John W. Coleman

The injector to be described is a component in the Electron Injector-Linear Accelerator—Condenser Module for illumination used on the variable 100-500kV electron microscope being built at the Radio Corporation of America for the University of Virginia.The injector is an independently powered, autonomous unit, operating at a constant 6kV positive with respect to accelerator potential, thereby making beam current independent of accelerator potential. The injector provides for on-axis ion trapping to prolong filament lifetime, and incorporates a derived Einzel lens for optical integration into the overall illumination system for microscopy. Electrostatic beam deflectors for alignment are an integral part of the apparatus. The entire injector unit is cantilevered off a door for side loading, and is topped with a 4-filament turret released electrically but driven by a self-contained Negator spring motor.


2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document