741 IMPAIRED TRANSCRIPTIONAL REGULATION OF TRANSFERRIN RECEPTOR 2 AND ITS ROLE IN INSUFFICIENT HEPCIDIN EXPRESSION IN HCV-TRANSFECTED CELLS

2008 ◽  
Vol 48 ◽  
pp. S276-S277
Author(s):  
Y. Kobayashi ◽  
M. Konishi ◽  
R. Sugimoto ◽  
N. Fujita ◽  
Y. Takei
2009 ◽  
Vol 9 (3) ◽  
pp. 217-227 ◽  
Author(s):  
Junwei Gao ◽  
Juxing Chen ◽  
Maxwell Kramer ◽  
Hidekazu Tsukamoto ◽  
An-Sheng Zhang ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8209
Author(s):  
Betty Berezovsky ◽  
Martin Báječný ◽  
Jana Frýdlová ◽  
Iuliia Gurieva ◽  
Daniel Wayne Rogalsky ◽  
...  

Erythropoietin (EPO) downregulates hepcidin expression to increase the availability of iron; the downregulation of hepcidin is mediated by erythroferrone (ERFE) secreted by erythroblasts. Erythroblasts also express transferrin receptor 2 (TFR2); however, the possible role of TFR2 in hepcidin downregulation is unclear. The purpose of the study was to correlate liver expression of hepcidin with the expression of ERFE and TFR2 in murine bone marrow and spleen at 4, 16, 24, 48, 72 and 96 h following administration of a single dose of EPO. Splenic Fam132b expression increased 4 h after EPO injection; liver hepcidin mRNA was decreased at 16 h. In the spleen, expression of TFR2 and transferrin receptor (TFR1) proteins increased by an order of magnitude at 48 and 72 h after EPO treatment. The EPO-induced increase in splenic TFR2 and TFR1 was associated with an increase in the number of Tfr2- and Tfr1-expressing erythroblasts. Plasma exosomes prepared from EPO-treated mice displayed increased amount of TFR1 protein; however, no exosomal TFR2 was detected. Overall, the results confirm the importance of ERFE in stress erythropoiesis, support the role of TFR2 in erythroid cell development, and highlight possible differences in the removal of TFR2 and TFR1 from erythroid cell membranes.


2010 ◽  
Vol 299 (3) ◽  
pp. G778-G783 ◽  
Author(s):  
Chiara Rapisarda ◽  
Juliana Puppi ◽  
Robin D. Hughes ◽  
Anil Dhawan ◽  
Sebastien Farnaud ◽  
...  

Hepcidin expression in vivo is regulated in proportion to iron status (i.e., increased by iron loading and decreased in iron deficiency). However, in vitro studies with hepatoma cell lines often show an inverse relationship between iron status and hepcidin expression. Here, we investigated possible molecular mechanisms responsible for the differences in iron sensing between hepatoma cell lines and human primary hepatocytes. RNA was collected from primary human hepatocytes, and HepG2 and HuH7 hepatoma cells were treated with either transferrin-bound and non-transferrin-bound iron. Expression of hepcidin, transferrin receptor 2, HFE, and hemojuvelin were quantified by real-time PCR. Hepcidin expression was increased in primary human hepatocytes following 24-h exposure to holoferric transferrin. In contrast, hepcidin mRNA levels in hepatoma cells were decreased by transferrin. Hepcidin expression was positively correlated with transferrin receptor 2 mRNA levels in primary human hepatocytes. Compared with primary hepatocytes, transferrin receptor 2 expression was significantly lower in hepatoma cell lines; furthermore, there was no correlation between transferrin receptor 2 and hepcidin mRNA levels in either HepG2 or HuH7 cells. Taken together our data suggest that transferrin receptor 2 is a likely candidate to explain the differences in iron sensing between hepatoma cell lines and primary human hepatocytes.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 746-746 ◽  
Author(s):  
Céline Besson-Fournier ◽  
Chloé Latour ◽  
Ophélie Gourbeyre ◽  
Patricia Aguilar-Martinez ◽  
Laura Silvestri ◽  
...  

Abstract Hereditary hemochromatosis (HH) is a genetically heterogeneous disorder characterized by elevated iron absorption from the diet, with consequent iron overload and tissue injury. Adult-onset forms of HH are caused by mutations in the HFE gene and in the gene for transferrin receptor 2 (TFR2). Human patients and mouse models of TFR2 and HFE-related HH show inappropriately low expression of hepcidin, the central regulator of iron metabolism. However, although these genes have been discovered far more than a decade ago, the mechanisms by which HFE and TFR2 influence hepcidin expression remain unclear. The bone morphogenetic protein BMP6 plays a key role in the regulation of hepcidin expression. BMP6 binds to type I (ALK3) and type II serine threonine kinase receptors, and to the coreceptor hemojuvelin (HJV), which phosphorylates intracellular SMAD proteins. Phosphorylated SMADs then bind to SMAD4 and translocate to the nucleus to induce the transcription of hepcidin. Inactivation of Bmp6 or Hjv in mice leads to considerably reduced hepcidin production and severe hepatic iron overload. However, there are major differences in hepcidin expression and extrahepatic tissue iron loading between Bmp6 or Hjv KO males and females, due to the suppressive effect of testosterone on hepcidin in males. In contrast to males, Bmp6-/- and Hjv-/-females still produce some hepcidin and do not massively accumulate iron in the pancreas, heart, or kidneys. The goal of this study was to investigate the role of Hfe and Tfr2 in the residual hepcidin production observed in the absence of Bmp6 in females. We used Bmp6-/-, Tfr2-/-, and B2m-/- mice to generate wild-type, single KO (Bmp6-/-, Tfr2-/-, or B2m-/-) and double KO (Tfr2-/- and Bmp6-/-, or B2m-/- and Bmp6-/-) mice, and we assessed Smad5 phosphorylation, hepcidin expression, and the sites of iron accumulation in the different groups of mice. Notably, B2m-/- mice develop spontaneously hepatic iron overload with a distribution similar to that seen in the liver of Hfe-/-mice and the lack of CD8+ lymphocytes and the absence of classical class I molecules in these mice are not responsible for their iron phenotype. Interestingly, the lack of functional Hfe or the lack of Tfr2 in Bmp6-/- females leads to a very similar phenotype that is much more severe than the single impairment of Bmp6, with massive iron loading in extrahepatic tissues, most notably the exocrine pancreas, the heart, and the kidney. Hepcidin mRNA and pSmad levels in the two categories of double KO females were much more strongly downregulated than in single Bmp6-/- females and, in contrast to Bmp6-/-females, no protein was detectable by ELISA in the double KO mice. Our findings clearly demonstrate that Hfe and Tfr2 regulate hepcidin production independently of Bmp6. The symmetrical phenotype of double Bmp6 and Tfr2, or double Bmp6 and Hfe KO mice suggests that Hfe and Tfr2 could participate in the same signaling complex affecting pSmad levels, even if they do not physically interact. Two complexes, one made of ALK3 and HJV, and the other made of ALK2, ALK3, HFE, and TFR2, very likely affect pSMAD levels independently of each other. Signaling through the second complex occurs in the absence of BMP6 and is most probably initiated by another BMP, for instance BMP2 or BMP4 that are also expressed in the liver and, although not regulated by iron, are capable of stimulating hepcidin expression in hepatocytes. Regulation of hepcidin expression by these two complexes would explain why, whereas Alk3, double Bmp6/Hfe, and double Bmp6/Tfr2 deficient females present with iron overload in extrahepatic tissues as do hepcidin KO mice, Bmp6 and Hjv single KO females present with early-onset iron overload only in the liver, similarly to patients with juvenile HH, and mice KO for Alk2, Hfe, or Tfr2 have the least severe phenotype, comparable with that of patients with adult-onset HH. Notably, TFR2 was also shown to localize in lipid rafts where it promotes MAPK activation. Thus, in addition to its role in the complex affecting pSMAD levels, TFR2 could also regulate hepcidin through a parallel pathway involving ERK1/2 signaling. This would explain the more severe phenotype of mice with combined deletion of Hfe and Tfr2 and the fact that, whereas Tfr2-/- mice do not respond to acute iron loading, Hfe-/-mice still have a significant, although blunted hepcidin response. This work was funded in part by FRM (DEQ2000326528) and ANR (ANR-13-BSV3-0015-01). Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Daniel Wysokinski ◽  
Janusz Blasiak ◽  
Mariola Dorecka ◽  
Marta Kowalska ◽  
Jacek Robaszkiewicz ◽  
...  

Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of theTFR2gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of theTFR2gene: c.1892C>T (rs2075674) and c.−258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects withBMI<26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.−258+123T>C polymorphisms of theTRF2gene may be associated with AMD occurrence, either directly or by modulation of risk factors.


Sign in / Sign up

Export Citation Format

Share Document