1147 EFFECT OF GENETIC POLYMORPHISMS IN THE CD81 GENE ON HEPATITIS C VIRUS CELL ENTRY AND NEUTRALIZATION WITH ANTI-CD81 ANTIBODIES

2013 ◽  
Vol 58 ◽  
pp. S467
Author(s):  
M. Deest ◽  
E. Steinmann ◽  
M.P. Manns ◽  
T. von Hahn ◽  
S. Ciesek
2011 ◽  
Vol 152 (22) ◽  
pp. 876-881
Author(s):  
Alajos Pár

The review discusses the genetic polymorphisms involved in the pathogenesis of hepatitis C virus (HCV) infection, that may determine the outcome of disease. In this field earlier both certain major histocompatibility complex (MHC) alleles and some cytokine gene variants have also been studied. Recently, the genome-wide association study (GWAS) and targeted single nucleotide polymorphism (SNP) analysis have revealed that a variant in the promoter region of interleukin-28B (IL-28B) gene is strongly linked to viral clearance and it may be the strongest pretreatment predictor of treatment response in chronic hepatitis C. Last year it was shown that two genetic variants leading to inosine triphosphatase deficiency protect against haemolytic anemia in patients receiving ribavirin during antiviral treatment for chronic HCV infection. Orv. Hetil., 2011, 152, 876–881.


2004 ◽  
Vol 78 (3) ◽  
pp. 1448-1455 ◽  
Author(s):  
Jie Zhang ◽  
Glenn Randall ◽  
Adrian Higginbottom ◽  
Peter Monk ◽  
Charles M. Rice ◽  
...  

ABSTRACT CD81 has been described as a putative receptor for hepatitis C virus (HCV); however, its role in HCV cell entry has not been characterized due to the lack of an efficient cell culture system. We have examined the role of CD81 in HCV glycoprotein-dependent entry by using a recently developed retroviral pseudotyping system. Human immunodeficiency virus (HIV) pseudotypes bearing HCV E1E2 glycoproteins show a restricted tropism for human liver cell lines. Although all of the permissive cell lines express CD81, CD81 expression alone is not sufficient to allow viral entry. CD81 is required for HIV-HCV pseudotype infection since (i) a monoclonal antibody specific for CD81 inhibited infection of susceptible target cells and (ii) silencing of CD81 expression in Huh-7.5 hepatoma cells by small interfering RNAs inhibited HIV-HCV pseudotype infection. Furthermore, expression of CD81 in human liver cells that were previously resistant to infection, HepG2 and HH29, conferred permissivity of HCV pseudotype infection. The characterization of chimeric CD9/CD81 molecules confirmed that the large extracellular loop of CD81 is a determinant for viral entry. These data suggest a functional role for CD81 as a coreceptor for HCV glycoprotein-dependent viral cell entry.


2013 ◽  
Vol 61 (7) ◽  
pp. 1088-1096 ◽  
Author(s):  
María Guadalupe Sánchez-Parada ◽  
Bertha Adriana Alvarez-Rodríguez ◽  
Belinda Claudia Gómez-Meda ◽  
Rogelio Troyo-Sanromán ◽  
Laura Verónica Sánchez-Orozco ◽  
...  

2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Romy Weller ◽  
Kathrin Hueging ◽  
Richard J. P. Brown ◽  
Daniel Todt ◽  
Sebastian Joecks ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is extraordinarily diverse and uses entry factors in a strain-specific manner. Virus particles associate with lipoproteins, and apolipoprotein E (ApoE) is critical for HCV assembly and infectivity. However, whether ApoE dependency is common to all HCV genotypes remains unknown. Therefore, we compared the roles of ApoE utilizing 10 virus strains from genotypes 1 through 7. ApoA and ApoC also support HCV assembly, so they may contribute to virus production in a strain-dependent fashion. Transcriptome sequencing (RNA-seq) revealed abundant coexpression of ApoE, ApoB, ApoA1, ApoA2, ApoC1, ApoC2, and ApoC3 in primary hepatocytes and in Huh-7.5 cells. Virus production was examined in Huh-7.5 cells with and without ApoE expression and in 293T cells where individual apolipoproteins (ApoE1, -E2, -E3, -A1, -A2, -C1, and -C3) were provided in trans. All strains were strictly ApoE dependent. However, ApoE involvement in virus production was strain and cell type specific, because some HCV strains poorly produced infectious virus in ApoE-expressing 293T cells and because ApoE knockout differentially affected virus production of HCV strains in Huh-7.5 cells. ApoE allelic isoforms (ApoE2, -E3, and -E4) complemented virus production of HCV strains to comparable degrees. All tested strains assembled infectious progeny with ApoE in preference to other exchangeable apolipoproteins (ApoA1, -A2, -C1, and -C3). The specific infectivity of HCV particles was similar for 293T- and Huh-7.5-derived particles for most strains; however, it differed by more than 100-fold in some viruses. Collectively, this study reveals strain-dependent and host cell-dependent use of ApoE during HCV assembly. These differences relate to the efficacy of virus production and also to the properties of released virus particles and therefore govern viral fitness at the level of assembly and cell entry. IMPORTANCE Chronic HCV infections are a major cause of liver disease. HCV is highly variable, and strain-specific determinants modulate the response to antiviral therapy, the natural course of infection, and cell entry factor usage. Here we explored whether host factor dependency of HCV in particle assembly is modulated by strain-dependent viral properties. We showed that all examined HCV strains, which represent all seven known genotypes, rely on ApoE expression for assembly of infectious progeny. However, the degree of ApoE dependence is modulated in a strain-specific and cell type-dependent manner. This indicates that HCV strains differ in their assembly properties and host factor usage during assembly of infectious progeny. Importantly, these differences relate not only to the efficiency of virus production and release but also to the infectiousness of virus particles. Thus, strain-dependent features of HCV modulate ApoE usage, with implications for virus fitness at the level of assembly and cell entry.


2009 ◽  
Vol 90 (5) ◽  
pp. 1055-1070 ◽  
Author(s):  
Michela E. Burlone ◽  
Agata Budkowska

Hepatitis C virus (HCV), a major cause of chronic liver disease, is a single-stranded positive sense virus of the family Flaviviridae. HCV cell entry is a multi-step process, involving several viral and cellular factors that trigger virus uptake into the hepatocyte. Tetraspanin CD81, human scavenger receptor SR-BI, and tight junction molecules Claudin-1 and occludin are the main receptors that mediate HCV entry. In addition, the virus may use glycosaminoglycans and/or low density receptors on host cells as initial attachment factors. A unique feature of HCV is the dependence of virus replication and assembly on host cell lipid metabolism. Most notably, during HCV assembly and release from the infected cells, virus particles associate with lipids and very-low-density lipoproteins. Thus, infectious virus circulates in patient sera in the form of triglyceride-rich particles. Consequently, lipoproteins and lipoprotein receptors play an essential role in virus uptake and the initiation of infection. This review summarizes the current knowledge about HCV receptors, mechanisms of HCV cell entry and the role of lipoproteins in this process.


2014 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Maren Lipskoch ◽  
Manfred Wiese ◽  
Joerg Timm ◽  
Michael Roggendorf ◽  
Sergei Viazov

2010 ◽  
Vol 138 (5) ◽  
pp. 1875-1884 ◽  
Author(s):  
Sandra Ciesek ◽  
Eike Steinmann ◽  
Markus Iken ◽  
Michael Ott ◽  
Fabian A. Helfritz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document