efficient cell culture system
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Ju-Bei Yen ◽  
Lee-Wen Chen ◽  
Ling-Huei Wei ◽  
Chien-Hui Hung ◽  
Shie-Shan Wang ◽  
...  

Human noroviruses (HuNVs) are the major agent of global gastroenteritis outbreaks. However, due to the lack of an efficient cell culture system for HuNV propagation, functions of the viral-encoded proteins in host cells are still poorly understood.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 213 ◽  
Author(s):  
Kelsey Craig ◽  
Xianjun Dai ◽  
Anzhong Li ◽  
Mijia Lu ◽  
Miaoge Xue ◽  
...  

Human noroviruses (HuNoVs) are responsible for more than 95% of the non-bacterial acute gastroenteritis epidemics in the world. The CDC estimates that every year 21 million individuals suffer from HuNoV-induced gastroenteritis in the United States. Currently, there is no FDA-approved vaccine for HuNoVs. Development of an effective vaccine has been hampered by the lack of an efficient cell culture system for HuNoVs and a suitable small animal model for pathogenesis study. In this study, we developed lactic acid bacteria (LAB) as a vector to deliver HuNoV antigen. A LAB strain (Lactococcus lactis) carrying VP1 gene of a HuNoV GII.4 virus (LAB-VP1) was constructed. It was found that HuNoV VP1 protein was highly expressed by LAB vector and was secreted into media supernatants. To test whether LAB-based HuNoV vaccine candidate is immunogenic, 4-day-old gnotobiotic piglets were orally inoculated with various doses of LAB-VP1. It was found that LABs were persistent in the small intestine of piglets and shed in pig feces for at least 25 days post inoculation. LAB DNA and VP1 were detected in mesenteric lymph nodes and spleen tissue in LAB-VP1 inoculated groups. HuNoV-specific IgG and IgA were detectable in serum and feces respectively at day 13 post-inoculation, and further increased at later time points. After being challenged with HuNoV GII.4 strain, a large amount of HuNoV antigens were observed in the duodenum, jejunum, and ileum sections of the intestine in the LAB control group. In contrast, significantly less, or no, HuNoV antigens were detected in the LAB-VP1 immunized groups. Collectively, these results demonstrate that a LAB-based HuNoV vaccine induces protective immunity in gnotobiotic piglets.


2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Ju-Bei Yen ◽  
Ling-Huei Wei ◽  
Lee-Wen Chen ◽  
Li-Yu Chen ◽  
Chien-Hui Hung ◽  
...  

ABSTRACTThe genotype II.4 (GII.4) variants of human noroviruses (HuNVs) are recognized as the major agent of global gastroenteritis outbreaks. Due to the lack of an efficient cell culture system for HuNV propagation, the exact roles of HuNV-encoded nonstructural proteins (including Nterm, NTPase, P22, VPg, Pro, and RdRp) in viral replication or pathogenesis have not yet been fully understood. Here, we report the molecular characterization of the GII.4 HuNV-encoded NTPase (designated GII-NTPase). Results from our studies showed that GII-NTPase forms vesicular or nonvesicular textures in the cell cytoplasm, and the nonvesicular fraction of GII-NTPase significantly localizes to the endoplasmic reticulum (ER) or mitochondria. Deletion analysis revealed that the N-terminal 179-amino-acid (aa) region of GII-NTPase is required for vesicle formation and for ER colocalization, whereas the C-terminal region is involved in mitochondrial colocalization. In particular, two mitochondrion-targeting domains were identified in the C-terminal region of GII-NTPase which perfectly colocalized with mitochondria when the N-terminal region of GII-NTPase was deleted. However, the corresponding C-terminal portions of NTPase derived from the GI HuNV did not show mitochondrial colocalization. We also found that GII-NTPase physically interacts with itself as well as with Nterm and P22, but not VPg, Pro, and RdRp, in cells. The Nterm- and P22-interacting region was mapped to the N-terminal 179-aa region of GII-NTPase, whereas the self-assembly of GII-NTPase could be achieved via a head-to-head, tail-to-tail, or head-to-tail configuration. More importantly, we demonstrate that GII-NTPase possesses a proapoptotic activity, which can be further enhanced by coexpression with Nterm or P22.IMPORTANCEDespite the importance of human norovirus GII.4 variants in global gastroenteritis outbreaks, the basic biological functions of the viral nonstructural proteins in cells remain rarely investigated. In this report, we focus our studies on characteristics of the GII.4 norovirus-encoded NTPase (GII-NTPase). We unexpectedly find that GII-NTPase can perfectly colocalize with mitochondria after its N-terminal region is deleted. However, such a phenomenon is not observed for NTPase encoded by a GI strain. We further reveal that the N-terminal 179-aa region of GII-NTPase is sufficient to mediate (i) vesicle formation, (ii) ER colocalization, (iii) the interaction with two other nonstructural proteins, including Nterm and P22, (iv) the formation of homodimers or homo-oligomers, and (v) the induction of cell apoptosis. Taken together, our findings emphasize that the virus-encoded NTPase must have multiple activities during viral replication or pathogenesis; however, these activities may vary somewhat among different genogroups.


Author(s):  
X. J. Meng

Hepatitis E virus (HEV) is a small, non-enveloped, single-strand, positive-sense RNA virus of approximately 7.2 kb in size. HEV is classified in the family Hepeviridae consisting of four recognized major genotypes that infect humans and other animals. Genotypes 1 and 2 HEV are restricted to humans and often associated with large outbreaks and epidemics in developing countries with poor sanitation conditions, whereas genotypes 3 and 4 HEV infect humans, pigs and other animal species and are responsible for sporadic cases of hepatitis E in both developing and industrialized countries. The avian HEV associated with Hepatitis-Splenomegaly syndrome in chickens is genetically and antigenically related to mammalian HEV, and likely represents a new genus in the family. There exist three open reading frames in HEV genome: ORF1 encodes non-structural proteins, ORF2 encodes the capsid protein, and the ORF3 encodes a small phosphoprotein. ORF2 and ORF3 are translated from a single bicistronic mRNA, and overlap each other but neither overlaps ORF1. Due to the lack of an efficient cell culture system and a practical animal model for HEV, the mechanisms of HEV replication and pathogenesis are poorly understood. The recent identification and characterization of animal strains of HEV from pigs and chickens and the demonstrated ability of cross-species infection by these animal strains raise potential public health concerns for zoonotic HEV transmission. It has been shown that the genotypes 3 and 4 HEV strains from pigs can infect humans, and vice versa. Accumulating evidence indicated that hepatitis E is a zoonotic disease, and swine and perhaps other animal species are reservoirs for HEV. A vaccine against HEV is not yet available.


2007 ◽  
Vol 88 (3) ◽  
pp. 903-911 ◽  
Author(s):  
Toshinori Tanaka ◽  
Masaharu Takahashi ◽  
Eiji Kusano ◽  
Hiroaki Okamoto

Using a faecal suspension with high load of Hepatitis E virus (HEV) (2.0×107 copies ml−1, genotype 3), we developed an efficient cell-culture system for HEV in a hepatocarcinoma cell line (PLC/PRF/5). HEV progeny released in the culture medium were passaged five times successively in PLC/PRF/5 cells. The initial day of appearance and load of HEV detectable in the culture supernatant after inoculation were dependent on the titre of seed virus in the inoculum. When 6.4×104 copies of HEV were inoculated on monolayers of PLC/PRF/5 cells in six-well microplates, HEV RNA was first detected in the culture medium on day 14 post-inoculation and increased to 9.1×105 copies ml−1 on day 60. When 8.6×105 copies of HEV were inoculated, HEV RNA was initially detected on day 12 and reached the highest titre of 8.6×107 copies ml−1 on day 60. HEV incubated at temperatures higher than 70 °C did not grow in PLC/PRF/5 cells, while HEV incubated at 56 °C for 30 min was infectious. Convalescent serum samples with IgM-class HEV antibodies obtained from patients infected with HEV of genotype 1, 3 or 4 neutralized the genotype 3 virus, indicating that HEV antibodies are broadly cross-reactive. Serum samples obtained from patients 8.7 or 24.0 years after the onset of HEV infection also prevented the propagation of HEV in PLC/PRF/5 cells, suggesting the presence of long-lasting HEV antibodies with neutralizing activity in individuals with past HEV infection.


2004 ◽  
Vol 78 (3) ◽  
pp. 1448-1455 ◽  
Author(s):  
Jie Zhang ◽  
Glenn Randall ◽  
Adrian Higginbottom ◽  
Peter Monk ◽  
Charles M. Rice ◽  
...  

ABSTRACT CD81 has been described as a putative receptor for hepatitis C virus (HCV); however, its role in HCV cell entry has not been characterized due to the lack of an efficient cell culture system. We have examined the role of CD81 in HCV glycoprotein-dependent entry by using a recently developed retroviral pseudotyping system. Human immunodeficiency virus (HIV) pseudotypes bearing HCV E1E2 glycoproteins show a restricted tropism for human liver cell lines. Although all of the permissive cell lines express CD81, CD81 expression alone is not sufficient to allow viral entry. CD81 is required for HIV-HCV pseudotype infection since (i) a monoclonal antibody specific for CD81 inhibited infection of susceptible target cells and (ii) silencing of CD81 expression in Huh-7.5 hepatoma cells by small interfering RNAs inhibited HIV-HCV pseudotype infection. Furthermore, expression of CD81 in human liver cells that were previously resistant to infection, HepG2 and HH29, conferred permissivity of HCV pseudotype infection. The characterization of chimeric CD9/CD81 molecules confirmed that the large extracellular loop of CD81 is a determinant for viral entry. These data suggest a functional role for CD81 as a coreceptor for HCV glycoprotein-dependent viral cell entry.


Sign in / Sign up

Export Citation Format

Share Document