Molecular events involved in neuronal death induced in the mouse hippocampus by in-vivo injection of kainic acid

2001 ◽  
Vol 93 (2) ◽  
pp. 190-198 ◽  
Author(s):  
Myriam Djebaı̈li ◽  
Mireille Lerner-Natoli ◽  
Montpied Pascale ◽  
Valérie Baille ◽  
Joël Bockaert ◽  
...  
2003 ◽  
Vol 119 (2) ◽  
pp. 220
Author(s):  
Myriam Djebaı&#x;li ◽  
Mireille Lerner-Natoli ◽  
Pascale Montpied ◽  
Valérie Baille ◽  
Joël Bockaert ◽  
...  

2012 ◽  
Vol 62 (5) ◽  
pp. 377-383 ◽  
Author(s):  
Seung-Tae Kim ◽  
Ah-Reum Doo ◽  
Seung-Nam Kim ◽  
Song-Yi Kim ◽  
Yoon Young Kim ◽  
...  

2009 ◽  
Vol 13 (4) ◽  
pp. 265 ◽  
Author(s):  
Jong-Seon Byun ◽  
Sang-Hyun Lee ◽  
Seong-Ho Jeon ◽  
Yong-Soo Kwon ◽  
Hee Jae Lee ◽  
...  

2020 ◽  
Author(s):  
S. Sadia Ameen ◽  
Antoine Dufour ◽  
M. Iqbal Hossain ◽  
Ashfaqul Hoque ◽  
Sharelle Sturgeon ◽  
...  

SummaryExcitotoxicity, a neuronal death process in neurological disorders, is initiated by over-stimulation of neuronal ionotropic glutamate receptors. The over-stimulated receptors dysregulate proteases, protein kinases and phosphatases, which in turn modify target neuronal proteins to induce cell death. To decipher this cell death mechanism, we used quantitative proteomics, phosphoproteomics and N-terminomics to identify modified proteins in excitotoxic neurons. Data, available in ProteomeXchange (identifiers: PXD019527 and PXD019211), enabled us to identify over one thousand such proteins with calpains, cathepsins and over twenty protein kinases as their major modifiers. These protein modification events can potentially perturb signalling pathways governing cell survival, synaptogenesis, axonal guidance and mRNA processing. Importantly, blocking the modification of Src protein kinase, a signalling hub in excitotoxic neurons, protected against neuronal loss in vivo in a rat model of neurotoxicity. Besides offering new insights into excitotoxic neuronal death mechanism, our findings suggest potential neuroprotective therapeutic targets for treating neurological disorders.Graphical abstractHighlightsMulti-dimensional proteomic analysis identified proteins modified by proteolysis and altered phosphorylation in neurons undergoing excitotoxic cell death.Calpains, cathepsins and over twenty protein kinases are major modifiers of these proteins.These protein modification events are predicted to impact cell survival, axonal guidance, synaptogenesis and mRNA processing.Blocking modification of an identified protein Src, which acts as a major signalling hub in neurons, was protective against excitotoxic injury in vivo.In BriefUsing multidimensional proteomic approaches, Ameen, et al. mapped the changes of proteome, phosphoproteome and N-terminome of cultured primary neurons during excitotoxicity, a crucial neuronal death process in neurological disorders. These proteomic changes document new excitotoxicity-associated molecular events, and offer insights into how these events are organized to induce neuronal death. Potential therapeutic relevance of these molecular events is illustrated by the demonstration that in vivo blockade of one of these events could protect against excitotoxic neuronal loss.


Planta Medica ◽  
2020 ◽  
Vol 86 (06) ◽  
pp. 434-441 ◽  
Author(s):  
Cheng Wei Lu ◽  
Tzu Yu Lin ◽  
Su Jane Wang

AbstractExcessive glutamate concentration induces neuronal death in acute brain injuries and chronic neurodegenerative diseases. Natural compounds from medicinal plants have attracted considerable attention for their use in the prevention and treatment of neurological disorders. 11-Keto-β-boswellic acid, a triterpenoid found in the medicinal plant Boswellia serrata, has neuroprotective potential. The present study investigated the effect of 11-keto-β-boswellic acid on glutamate release in vitro and kainic acid-induced glutamate excitotoxicity in vivo in the rat hippocampus. In rat hippocampal nerve terminals (synaptosomes), 11-keto-β-boswellic acid dose-dependently inhibited 4-aminopyridine-stimulated glutamate release. This effect was dependent on extracellular calcium, persisted in the presence of the glutamate transporter inhibitor DL-threo-β-benzyloxyaspartate, and was blocked by the vesicular transporter inhibitor bafilomycin A1. In addition, 11-keto-β-boswellic acid reduced the 4-aminopyridine-induced increase in intrasynaptosomal Ca2+ levels. The N- and P/Q-type channel blocker ω-conotoxin MVIIC and the protein kinase A inhibitor H89 significantly suppressed the 11-keto-β-boswellic acid-mediated inhibition of glutamate release, whereas the intracellular Ca2+-releasing inhibitors dantrolene, CGP37157, and xestospongin C, mitogen-activated protein kinase inhibitor PD98059, as well as protein kinase C inhibitor calphostin C had no effect. In a rat model of excitotoxicity induced by intraperitoneal kainic acid injection (15 mg/kg), intraperitoneal 11-keto-β-boswellic acid administration (10 or 50 mg/kg) 30 min before kainic acid injection considerably ameliorated kainic acid-induced glutamate concentration elevation and CA3 neuronal death. These data suggested that 11-keto-β-boswellic acid inhibits glutamate release from the rat hippocampal synaptosomes by suppressing N- and P/Q-type Ca2+ channels and protein kinase A activity, as well as exerts protective effects against kainic acid-induced excitotoxicity in vivo.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kyoung Hoon Jeong ◽  
Un Ju Jung ◽  
Sang Ryong Kim

Kainic acid (KA) is well known as a chemical compound to study epileptic seizures and neuronal excitotoxicity. KA-induced excitotoxicity causes neuronal death by induction of autophagic stress and microglia-derived neuroinflammation, suggesting that the control of KA-induced effects may be important to inhibit epileptic seizures with neuroprotection. Naringin, a flavonoid in grapefruit and citrus fruits, has anti-inflammatory and antioxidative activities, resulting in neuroprotection in animal models from neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. In the present study, we examined its beneficial effects involved in antiautophagic stress and antineuroinflammation in the KA-treated hippocampus. Our results showed that naringin treatment delayed the onset of KA-induced seizures and decreased the occurrence of chronic spontaneous recurrent seizures (SRS) in KA-treated mice. Moreover, naringin treatment protected hippocampal CA1 neurons in the KA-treated hippocampus, ameliorated KA-induced autophagic stress, confirmed by the expression of microtubule-associated protein light chain 3 (LC3), and attenuated an increase in tumor necrosis factor-α(TNFα) in activated microglia. These results suggest that naringin may have beneficial effects of preventing epileptic events and neuronal death through antiautophagic stress and antineuroinflammation in the hippocampusin vivo.


1999 ◽  
Vol 19 (12) ◽  
pp. 1296-1308 ◽  
Author(s):  
Hélène Plamondon ◽  
Nicolas Blondeau ◽  
Catherine Heurteaux ◽  
Michel Lazdunski

Preconditioning with sublethal ischemia attenuates the detrimental effects of subsequent prolonged ischemic insults. This research elucidates potential in vivo cross-tolerance between different neuronal death-generating treatments such as kainate administration, which induces seizures and global ischemia. This study also investigates the effects of a mild epileptic insult on neuronal death in rat hippocampus after a subsequent, lethal epileptic stress using kainic acid (KA) as a model of epilepsy. Three preconditioning groups were as follows: group 1 was injected with 5 mg/kg KA before a 6-minute global ischemia; group 2 received a 3-minute global ischemia before 7.5 mg/kg KA; and group 3 was injected with a 5-mg/kg dose of KA before a 7.5-mg/kg KA injection. The interval between treatments was 3 days. Neuronal degeneration, revealed by the silver impregnation method and analysis of cresyl violet staining, was markedly reduced in rats preconditioned with a sublethal ischemia or a 5-mg/kg KA treatment. Labeling with terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′triphosphate-biotin nick-end labeling and DNA laddering confirmed the component of DNA fragmentation in the death of ischemic and epileptic neurons and its reduction in all preconditioned animals. The current study supports the existence of bidirectional cross-tolerance between KA excitotoxicity and global ischemia and suggests the involvement of adenosine A1 receptors and sulfonylurea- and ATP-sensitive K+ channels in this protective phenomenon.


2020 ◽  
Vol 23 (8) ◽  
pp. 814-826
Author(s):  
Pradeep Hanumanthappa ◽  
Arpitha Ashok ◽  
Inderjit Prakash ◽  
Carmel I. Priya ◽  
Julie Zinzala ◽  
...  

Background: Parkinson’s disease ranks second, after Alzheimer’s as the major neurodegenerative disorder, for which no cure or disease-modifying therapies exist. Ample evidence indicate that PD manifests as a result of impaired anti-oxidative machinery leading to neuronal death wherein Cullin-3 has ascended as a potential therapeutic target for diseases involving damaged anti-oxidative machinery. Objective: The design of target specific inhibitors for the Cullin-3 protein might be a promising strategy to increase the Nrf2 levels and to decrease the possibility of “off-target” toxic properties. Methods: In the present study, an integrated computational and wet lab approach was adopted to identify small molecule inhibitors for Cullin-3. The rational drug designing process comprised homology modeling and derivation of the pharmacophore for Cullin-3, virtual screening of Zinc natural compound database, molecular docking and Molecular dynamics based screening of ligand molecules. In vivo validations of an identified lead compound were conducted in the PD model of C. elegans. Results and Discussion: Our strategy yielded a potential inhibitor; (Glide score = -12.31), which was evaluated for its neuroprotective efficacy in the PD model of C. elegans. The inhibitor was able to efficiently defend against neuronal death in PD model of C. elegans and the neuroprotective effects were attributed to its anti-oxidant activities, supported by the increase in superoxide dismutase, catalase and the diminution of acetylcholinesterase and reactive oxygen species levels. In addition, the Cullin-3 inhibitor significantly restored the behavioral deficits in the transgenic C. elegans. Conclusion: Taken together, these findings highlight the potential utility of Cullin-3 inhibition to block the persistent neuronal death in PD. Further studies focusing on Cullin-3 and its mechanism of action would be interesting.


Sign in / Sign up

Export Citation Format

Share Document