Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails

1998 ◽  
Vol 49 (1) ◽  
pp. 21-34 ◽  
Author(s):  
A Petzold ◽  
J Ström ◽  
S Ohlsson ◽  
F.P Schröder
2010 ◽  
Vol 10 (12) ◽  
pp. 5449-5474 ◽  
Author(s):  
M. Wang ◽  
J. E. Penner

Abstract. A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.


2003 ◽  
Vol 3 (2) ◽  
pp. 1415-1451 ◽  
Author(s):  
B. Kärcher ◽  
J. Ström

Abstract. The probability of occurrence of ice crystal number densities in young cirrus clouds is examined based on airborne measurements. The observations have been carried out at midlatitudes in both hemispheres at equivalent latitudes (~52–55° N/S) during the same season (local autumn in 2000). The in situ measurements considered in the present study include temperatures, vertical velocities, and ice crystal concentrations, the latter determined with high precision and accuracy using a counterflow virtual impactor. Most young cirrus clouds typically contain high number densities (1–10 cm−3) of small (diameter <20 μm) ice crystals. This mode dominates the probability distributions in both hemispheres and is shown to be caused by rapid cooling rates associated with updraft speeds in the range 10–100 cm s-1. A second mode containing larger crystals extends from ~1 cm−3 to low concentrations close to the detection threshold (~3×104cm−3) and is associated with lower updraft speeds. Results of a statistical analysis provide compelling evidence that the dynamical variability of vertical air motions on the mesoscale is the key factor determining the observed probability distributions of pristine ice crystal concentrations in cirrus. Other factors considered are variations of temperature as well as size, number, and ice nucleation thresholds of the freezing aerosol particles. The variability in vertical velocities is likely caused by atmospheric waves. Inasmuch as gravity waves are widespread, mesoscale variability in vertical velocities can be viewed as a universa  feature of young cirrus clouds. Large-scale models that do not account for this subgrid-scale variability yield erroneous predictions of the variability of basic cirrus cloud properties. Climate change may bring about changes in the global distribution of updraft speeds, mean air temperatures, and aerosol properties. As shown in this work, these changes could significantly modify the probability distribution of cirrus ice crystal concentrations. This study emphasizes the key role of vertical velocities and mesoscale variability in vertical velocities in controlling cirrus properties. The results suggest that, in any effort to ascribe cause to trends of cirrus cloud properties, a careful evaluation of dynamical changes in cloud formation should be done before conclusions regarding the role of other anthropogenic factors, such as changes in aerosol composition, are made.


2005 ◽  
Vol 62 (7) ◽  
pp. 2568-2579 ◽  
Author(s):  
C. R. Hoyle ◽  
B. P. Luo ◽  
T. Peter

Abstract Recent measurements with four independent particle instruments in cirrus clouds, which formed without convective or orographic influence, report high number densities of ice particles (as high as nice = 50 cm−3) embedded in broad density distributions (nice = 0.1–50 cm−3). It is shown here that small-scale temperature fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions are required to explain these observations. These waves have typical peak-to-peak amplitudes of 1–2 K and frequencies of up to 10 h−1, corresponding to instantaneous cooling rates of up to 60 K h−1. Such waves remain unresolved in even the most advanced state-of-the-art global atmospheric models. Given the ubiquitous nature of these fluctuations, it is suggested that the character of young in situ forming cirrus clouds is mostly determined by homogeneous freezing of ice in solution droplets, driven by a broad range of small-scale fluctuations (period ∼a few minutes) with moderate to high cooling rates (1–100 K h−1).


2006 ◽  
Vol 6 (7) ◽  
pp. 1977-1990 ◽  
Author(s):  
A. C. Targino ◽  
R. Krejci ◽  
K. J. Noone ◽  
P. Glantz

Abstract. Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 μm diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around –27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles represent significant part of the analyzed cloud residual particles. This indicates that organic material may be poor ice nuclei, in contrast to polluted cases when ice crystal formation was observed at the same environmental conditions and when the cloud residual composition was dominated by mineral dust. The presented results suggest that the chemical composition of cloud nuclei and airmass origin have a strong impact on the ice formation through heterogeneous nucleation in supercooled clouds.


2011 ◽  
Vol 11 (8) ◽  
pp. 23761-23800
Author(s):  
M. W. Gallagher ◽  
P. J. Connolly ◽  
A. Heymsfield ◽  
K. N. Bower ◽  
T. W. Choularton ◽  
...  

Abstract. Aircraft measurements of the microphysics of a tropical convective anvil (at temperatures ~−60 °C) forming above the HECTOR storm have been performed. The observed microphysics has been compared to a bulk and explicit microphysical model of the anvil region including crystal aggregation and sedimentation. It has been found that in flights made using straight and level runs perpendicular to the storm that the number of ice crystals initially decreased with distance from the storm as aggregation took place resulting in larger crystals followed by their loss due to sedimentation. At still greater distances from the storm the number of very small crystals increased. This is attributed to the formation of new ice crystals on aerosol particles as the ice super saturation rose following the depletion of the larger ice particles following aggregation and sedimentation. Comparison with the explicit microphysics model showed that the changes in the shapes of the ice crystal spectra as a function of distance from the storm could be explained by the explicit microphysical model if the aggregation efficiency was set to E~0.02. It is noteworthy that this aggregation efficiency is much larger than values normally used in cloud resolving models at these temperatures (typically E~0.0016). Furthermore if the bulk model is used then optimum agreement was reached with a collection efficiency for aggregation of E~0.05. These results are important for the treatment of the evolution and lifetime of tropical cirrus clouds.


2020 ◽  
Vol 20 (21) ◽  
pp. 12569-12608 ◽  
Author(s):  
Martina Krämer ◽  
Christian Rolf ◽  
Nicole Spelten ◽  
Armin Afchine ◽  
David Fahey ◽  
...  

Abstract. This study presents airborne in situ and satellite remote sensing climatologies of cirrus clouds and humidity. The climatologies serve as a guide to the properties of cirrus clouds, with the new in situ database providing detailed insights into boreal midlatitudes and the tropics, while the satellite-borne data set offers a global overview. To this end, an extensive, quality-checked data archive, the Cirrus Guide II in situ database, is created from airborne in situ measurements during 150 flights in 24 campaigns. The archive contains meteorological parameters, ice water content (IWC), ice crystal number concentration (Nice), ice crystal mean mass radius (Rice), relative humidity with respect to ice (RHice), and water vapor mixing ratio (H2O) for each of the flights. Depending on the parameter, the database has been extended by about a factor of 5–10 compared to earlier studies. As one result of our investigation, we show that the medians of Nice, Rice, and RHice have distinct patterns in the IWC–T parameter space. Lookup tables of these variables as functions of IWC and T can be used to improve global model cirrus representation and remote sensing retrieval methods. Another outcome of our investigation is that across all latitudes, the thicker liquid-origin cirrus predominate at lower altitudes, while at higher altitudes the thinner in situ-origin cirrus prevail. Further, examination of the radiative characteristics of in situ-origin and liquid-origin cirrus shows that the in situ-origin cirrus only slightly warm the atmosphere, while liquid-origin cirrus have a strong cooling effect. An important step in completing the Cirrus Guide II is the provision of the global cirrus Nice climatology, derived by means of the retrieval algorithm DARDAR-Nice from 10 years of cirrus remote sensing observations from satellite. The in situ measurement database has been used to evaluate and improve the satellite observations. We found that the global median Nice from satellite observations is almost 2 times higher than the in situ median and increases slightly with decreasing temperature. Nice medians of the most frequently occurring cirrus sorted by geographical regions are highest in the tropics, followed by austral and boreal midlatitudes, Antarctica, and the Arctic. Since the satellite climatologies enclose the entire spatial and temporal Nice occurrence, we could deduce that half of the cirrus are located in the lowest, warmest (224–242 K) cirrus layer and contain a significant amount of liquid-origin cirrus. A specific highlight of the study is the in situ observations of cirrus and humidity in the Asian monsoon anticyclone and the comparison to the surrounding tropics. In the convectively very active Asian monsoon, peak values of Nice and IWC of 30 cm−3 and 1000 ppmv are detected around the cold point tropopause (CPT). Above the CPT, ice particles that are convectively injected can locally add a significant amount of water available for exchange with the stratosphere. We found IWCs of up to 8 ppmv in the Asian monsoon in comparison to only 2 ppmv in the surrounding tropics. Also, the highest RHice values (120 %–150 %) inside of clouds and in clear sky are observed around and above the CPT. We attribute this to the high H2O mixing ratios (typically 3–5 ppmv) observed in the Asian monsoon compared to 1.5 to 3 ppmv found in the tropics. Above the CPT, supersaturations of 10 %–20 % are observed in regions of weak convective activity and up to about 50 % in the Asian monsoon. This implies that the water available for transport into the stratosphere might be higher than the expected saturation value.


2019 ◽  
Author(s):  
David Neubauer ◽  
Sylvaine Ferrachat ◽  
Colombe Siegenthaler-Le Drian ◽  
Philip Stier ◽  
Daniel G. Partridge ◽  
...  

Abstract. The global aerosol-climate model ECHAM6.3-HAM2.3 (E63H23) and the previous model versions ECHAM5.5-HAM2.0 (E55H20) and ECHAM6.1-HAM2.2 (E61H22) are evaluated using global observational datasets for clouds and precipitation. In E63H23 low cloud amount, liquid and ice water path and cloud radiative effects are more realistic than in previous model versions. E63H23 has a more physically based aerosol activation scheme, improvements in the cloud cover scheme, changes in detrainment of convective clouds, changes in the sticking efficiency for accretion of ice crystals by snow, consistent ice crystal shapes throughout the model, changes in mixed phase freezing and an inconsistency in ice crystal number concentration (ICNC) in cirrus clouds was removed. Biases that were identified in E63H23 (and in previous model versions) are a too low cloud amount in stratocumulus regions, deep convective clouds in the Atlantic and Pacific oceans form too close to the continents and there are indications that ICNCs are overestimated. Since clouds are important for effective radiative forcing due to aerosol-radiation and aerosol-cloud interactions (ERFari+aci) and equilibrium climate sensitivity (ECS), also differences in ERFari+aci and ECS between the model versions were analyzed. ERFari+aci is weaker in E63H23 (−1.0 W m−2) than in E61H22 (−1.2 W m−2) (or E55H20; −1.1 W m−2). This is caused by the weaker shortwave ERFari+aci (new aerosol activation scheme and sea salt emission parameterization in E63H23, more realistic simulation of cloud water) overcompensating the weaker longwave ERFari+aci (removal of an inconsistency in ICNC in cirrus clouds in E61H22). The decrease in ECS in E63H23 (2.5 K) compared to E61H22 (2.8 K) is due to changes in the entrainment rate for shallow convection (affecting the cloud amount feedback) and a stronger cloud phase feedback.


Sign in / Sign up

Export Citation Format

Share Document