Fast repair of laminated beams using UV curing composites

2003 ◽  
Vol 60 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Guoqiang Li ◽  
Neema Pourmohamadian ◽  
Adam Cygan ◽  
Jerry Peck ◽  
Jack E Helms ◽  
...  
2006 ◽  
Vol 72 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Guoqiang Li ◽  
Amanuel Ghebreyesus

2019 ◽  
Vol 178 ◽  
pp. 107855
Author(s):  
Ji-Won Park ◽  
Kyeng-Bo Sim ◽  
Gyu-Seong Shim ◽  
Jong-Ho Back ◽  
Dooyoung Baek ◽  
...  
Keyword(s):  

RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4660-4671
Author(s):  
Yaofa Luo ◽  
Shuang Wang ◽  
Xihan Fu ◽  
Xiaosheng Du ◽  
Haibo Wang ◽  
...  

A durable superhydrophobic, self-cleaning cotton fabric based on UV curing was prepared and used in the field of oil/water separation.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
Muhammad Shaukat Khan ◽  
Hunain Farooq ◽  
Christopher Wittmund ◽  
Stephen Klimke ◽  
Roland Lachmayer ◽  
...  

We report on a polymer-waveguide-based temperature sensing system relying on switchable molecular complexes. The polymer waveguide cladding is fabricated using a maskless lithographic optical system and replicated onto polymer material (i.e., PMMA) using a hot embossing device. An iron-amino-triazole molecular complex material (i.e., [Fe(Htrz)2.85(NH2-trz)0.15](ClO4)2) is used to sense changes in ambient temperature. For this purpose, the core of the waveguide is filled with a mixture of core material (NOA68), and the molecular complex using doctor blading and UV curing is applied for solidification. The absorption spectrum of the molecular complex in the UV/VIS light range features two prominent absorption bands in the low-spin state. As temperature approaches room temperature, a spin-crossover transition occurs, and the molecular complex changes its color (i.e. spectral properties) from violet-pink to white. The measurement of the optical power transmitted through the waveguide as a function of temperature exhibits a memory effect with a hysteresis width of approx. 12 °C and sensitivity of 0.08 mW/°C. This enables optical rather than electronic temperature detection in environments where electromagnetic interference might influence the measurements.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Shigefumi Okamoto ◽  
Nobuhiko Akiyama ◽  
Yasuhiro Araki ◽  
Kenji Aoki ◽  
Masahiro Inayama

AbstractVarious design codes and design proposals have been proposed for glued laminated timber beams with round holes, assuming that the entire beam is composed of homogeneous-grade timber. However, in Japan, glued laminated timber composed of homogeneous-grade timber is rarely used for beams. In this study, the difference in the load-bearing capacity of glued laminated beams composed of homogeneous-grade timber and heterogeneous-grade timber with round holes when fractured by cracking was investigated experimentally and analytically. The materials used in the tests were glued laminated beams composed of homogeneous-grade Scots pine timber with a strength grade of E105-F345 and heterogeneous-grade Scots pine timber with a strength grade of E105-F300. Experiments confirmed that although the glued laminated beams composed of heterogeneous-grade timber have a lower material strength in the lamina with holes, its resistance to fracturing due to cracks associated with the holes is almost the same as that of the glued laminated beams composed of homogeneous-grade timber. The stresses acting on the holes in the laminated timber with holes of less than half the beam height were lower in the glued laminated beams composed of heterogeneous-grade timber than in the glued laminated beams composed of homogeneous-grade timber. The ratio of the stresses was found to be approximately equal to the ratio of the maximum bending stress or the maximum shear stress acting on the inner layer lamina, as determined by Bernoulli–Euler theory.


2019 ◽  
Vol 17 (2) ◽  
pp. 333-343 ◽  
Author(s):  
Anaïs Even ◽  
Guillaume Vignaud ◽  
Nadia Guitter ◽  
Nathalie Le Bozec ◽  
Philippe Tingaut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document