Congenital abnormal plasminogen chicago IV: A dysplasminogenemia with 50% potential active sites with active centre, charge mutations and kinetics of activation defects

1995 ◽  
Vol 9 (1) ◽  
pp. 29-40 ◽  
Author(s):  
K.A. Kozlowski ◽  
A. Berlet ◽  
K.C. Robbins
1980 ◽  
Vol 45 (10) ◽  
pp. 2728-2741 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Kinetics have been studied of the reaction system taking place during the reaction of thiophene on the cobalt-molybdenum catalyst in a gradientless circulation flow reactor at 360 °C and atmospheric pressure. Butane has been found present in a small amount in the reaction products even at very low conversion. In view of this, consecutive and parallel-consecutive (triangular) reaction schemes have been proposed. In the former scheme the appearance of butane is accounted for by rate of desorption of butene being comparable with the rate of its hydrogenation. According to the latter scheme part of the butane originates from thiophene via a different route than through hydrogenation of butene. Analysis of the kinetic data has revealed that the reaction of thiophene should be considered to take place on other active sites than that of butene. Kinetic equations derived on this assumption for the consecutive and the triangular reaction schemes correlate experimental data with acceptable accuracy.


1981 ◽  
Vol 46 (7) ◽  
pp. 1577-1587 ◽  
Author(s):  
Karel Jeřábek

Catalytic activity of ion exchangers prepared by partial sulphonation of styrene-divinylbenzene copolymers in reesterifications of ethyl acetate by methanol and propanol, hydrolysis of ethyl acetate and in synthesis of bisphenol A has been compared with data on polymer structure of these catalysts and with distribution of the crosslinking agent, divinylbenzene, calculated from literature data on kinetics of copolymerisation of styrene with divinylbenzene. It was found that the polymer structure of ion exchangers influences catalytic activity predominantly by changing the local concentration of acid active sites. The results obtained indicated that the effect of transport phenomena on the rate of catalytic reactions does not depend on the degree of swelling of the ion exchangers in reaction medium but it is mainly dependent on the relative affinity of reaction components to the acid groups or to the polymer skeleton.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruirui Wang ◽  
Renbing Wu ◽  
Chaofan Ding ◽  
Ziliang Chen ◽  
Hongbin Xu ◽  
...  

AbstractThe practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.


2020 ◽  
Vol 4 (4) ◽  
pp. 1747-1753 ◽  
Author(s):  
Yuanyuan Ma ◽  
Wenjie Zang ◽  
Afriyanti Sumboja ◽  
Lu Mao ◽  
Ximeng Liu ◽  
...  

Hollow structuring of active components is an effective strategy to improve the kinetics of oxygen electrode catalysts, arising from the increased the active surface area, the defects on the exposed surface, and the accessible active sites.


1970 ◽  
Vol 4 (1) ◽  
Author(s):  
Ismail Mohd Saaid ◽  
Abdul Rahman Mohamed and Subhash Bhatia

Kinetics for the selective catalytic reduction (SCR) of nitric oxide (NO) using i-C4H10 as the reducing agent over Pt-Cu-ZSM5 has been investigated in the temperature range of 200 ?C – 450 oC. Langmuir-Hinshelwood-Hougen-Watson model was proposed for kinetics of the reaction and reaction parameters were evaluated.  The heat of adsorption of NO was found to be considerably high, attributed to strong covalent bond between NO gas molecules and metal active sites.  Using reaction parameters obtained from the experiment, the heterogeneous model could form a good correlation between experimental and simulated values of NO reduction. Key Words: Reaction kinetics, Selective catalytic reduction, NO reduction, Bimetallic catalyst, H-ZSM-5 zeolite.


2021 ◽  
Author(s):  
Jun Huang

<p>We develop a theory to investigate how energetic nonhomogeneity of active sites determines the overall activity of an electrocatalyst and how the evolution of the nonhomogeneity determines the overall durability. The simple theory is amenable to exact analytical solutions and thus fosters an in-depth transparent analysis. It is revealed that nonhomogeneity does not necessarily diminish the electrocatalytic activity; instead, the highest overall activity is obtained with a suitable level of nonhomogeneity that is commensurate with the mean property. The evolution kinetics of nonhomogeneity is described by using the Fokker-Planck theory. Exponential decay of the activity is predicted theoretically and confirmed experimentally. The present work represents a first step toward closing the gap between model and practical electrocatalysts using statistical considerations.</p>


1952 ◽  
Vol 9 (8) ◽  
pp. 393-416 ◽  
Author(s):  
M. M. R. Khan

From the dark muscle of British Columbia herring a highly active enzyme capable of peroxidizing non-conjugated unsaturated fatty acids was isolated. This "lipoxidase", which was shown to be a nitrogenous complex possessing no heavy metals or sulphydryl group as the active centre, is heat-labile and can act only in presence of activators such as certain iron-containing organic nitrogenous compounds. Two such compounds, namely haemoglobin and cytochrome "c" were isolated. The enzyme exhibits optimal activity at 15 °C. and pH 6.9. There is also an optimal concentration of enzyme, substrate, and of the activators for maximal enzyme activity. The presence of the activators appears to change the kinetics, of the reactions. The inhibition of the enzymic reaction brought about by cyanide and azide is possibly due to the inactivation of the iron-containing activators rather than of the enzyme itself.


2021 ◽  
Author(s):  
Victor Stivenson Sandoval-Bohorquez ◽  
Edgar M. Morales-Valencia ◽  
Carlos Omar Castillo-Araiza ◽  
Luz Marina Ballesteros Rueda ◽  
Víctor Gabriel Baldovino Medrano

The dry reforming of methane is a promising technology for the abatement of CH<sub>4</sub> and CO<sub>2</sub>. Solid solution Ni–La oxide catalysts are characterized by their long–term stability (100h) when tested at full conversion. The kinetics of dry reforming over this type of catalysts has been studied using both power law and Langmuir–Hinshelwood based approaches. However, these studies typically deal with fitting the net CH<sub>4</sub> rate hence disregarding competing and parallel surface processes and the different possible configurations of the active surface. In this work, we synthesized a solid solution Ni–La oxide catalyst and tested six Langmuir–Hinshelwood mechanisms considering both single and dual active sites for assessing the kinetics of dry reforming and the competing reverse water gas shift reaction and investigated the performance of the derived kinetic models. In doing this, it was found that: (1) all the net rates were better fitted by a single–site model that considered that the first C–H bond cleavage in methane occurred over a <a>metal−oxygen </a>pair site; (2) this model predicted the existence of a nearly saturated nickel surface with chemisorbed oxygen adatoms derived from the dissociation of CO<sub>2</sub>; (3) the dissociation of CO<sub>2</sub> can either be an inhibitory or an irrelevant step, and it can also modify the apparent activation energy for CH<sub>4</sub> activation. These findings contribute to a better understanding of the dry reforming reaction's kinetics and provide a robust kinetic model for the design and scale–up of the process.


1998 ◽  
Vol 58 (5) ◽  
pp. 6134-6144 ◽  
Author(s):  
G. Oshanin ◽  
S. Nechaev ◽  
A. M. Cazabat ◽  
M. Moreau

Sign in / Sign up

Export Citation Format

Share Document