Occurrence of butyltin compounds in the waters of selected lakes, rivers and coastal environments from China

2001 ◽  
Vol 115 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Jiang Gui-bin ◽  
Zhou Qun-fang ◽  
Liu Ji-yan ◽  
Wu Di-jing
2002 ◽  
Author(s):  
Harindra J.. Fernando ◽  
Sergey I. Voropayev ◽  
Don L. Boyer ◽  
Andjelka N. Srdic ◽  
Stephan T. Grilli
Keyword(s):  

1992 ◽  
Vol 25 (11) ◽  
pp. 117-124 ◽  
Author(s):  
N. Watanabe ◽  
S. Sakai ◽  
H. Takatsuki

Examination of individual degradation paths (biodegradation and photolysis) of butyltin compounds (especially tributyltin: TBT) in natural waters was performed. Biodegradation of TBT and dibutyltin (DBT) in an unfiltered sea water in summer is rather fast; their half life is about a week. But pretreatment with glass fiber filter makes the half life of TBT much longer (about 80 days). Photolysis of TBT in sea water by sun light is rapid (half life is about 0.5 days), and faster than in distilled water or in fresh water. Degradation rates of each process for TBT are calculated in various conditions of sea water, and contribution rates are compared. Biodegradation will be the main degradation process in an “SS-rich” area such as a marina, but photolysis will exceed that in a “clean” area. Over all half lives of TBT in sea water vary from 6 days to 127 days considering seasons and presence of SS.


2016 ◽  
Author(s):  
Michael Twarog ◽  
◽  
Stephen J. Culver ◽  
David J. Mallinson ◽  
Kathleen M. Farrell

2021 ◽  
Vol 9 (3) ◽  
pp. 311
Author(s):  
Ben R. Evans ◽  
Iris Möller ◽  
Tom Spencer

Salt marshes are important coastal environments and provide multiple benefits to society. They are considered to be declining in extent globally, including on the UK east coast. The dynamics and characteristics of interior parts of salt marsh systems are spatially variable and can fundamentally affect biotic distributions and the way in which the landscape delivers ecosystem services. It is therefore important to understand, and be able to predict, how these landscape configurations may evolve over time and where the greatest dynamism will occur. This study estimates morphodynamic changes in salt marsh areas for a regional domain over a multi-decadal timescale. We demonstrate at a landscape scale that relationships exist between the topology and morphology of a salt marsh and changes in its condition over time. We present an inherently scalable satellite-derived measure of change in marsh platform integrity that allows the monitoring of changes in marsh condition. We then demonstrate that easily derived geospatial and morphometric parameters can be used to determine the probability of marsh degradation. We draw comparisons with previous work conducted on the east coast of the USA, finding differences in marsh responses according to their position within the wider coastal system between the two regions, but relatively consistent in relation to the within-marsh situation. We describe the sub-pixel-scale marsh morphometry using a morphological segmentation algorithm applied to 25 cm-resolution maps of vegetated marsh surface. We also find strong relationships between morphometric indices and change in marsh platform integrity which allow for the inference of past dynamism but also suggest that current morphology may be predictive of future change. We thus provide insight into the factors governing marsh degradation that will assist the anticipation of adverse changes to the attributes and functions of these critical coastal environments and inform ongoing ecogeomorphic modelling developments.


2021 ◽  
Vol 64 (1) ◽  
pp. 13-18
Author(s):  
Ira Gray ◽  
Lindsay A. Green-Gavrielidis ◽  
Carol Thornber

Abstract Caffeine is present in coastal environments worldwide and there is a need to assess its impact on marine organisms. Here, we exposed two species of ecologically important marine macroalgae (Chondrus crispus and Codium fragile subsp. fragile) to a suite of caffeine concentrations and measured their response. Caffeine concentrations of 10–100 ng L−1 had no significant effect on the growth rate or photosynthetic efficiency of either algae. Extremely high concentrations (100–200 mg L−1), which may occur acutely, produced sublethal effects for both species and mortality in C. fragile subsp. fragile. Our results highlight the need to understand how caffeine impacts marine species.


2021 ◽  
Vol 167 ◽  
pp. 112343
Author(s):  
Van Ryan Kristopher R. Galarpe ◽  
Caroline Marie B. Jaraula ◽  
Maria Kristina O. Paler

Sign in / Sign up

Export Citation Format

Share Document