801 Brain production of pro-inflammatory cytokines in patients with acute liver failure and uncontrolled intracranial hypertension: evidence of disrupted blood brain barrier?

Hepatology ◽  
2003 ◽  
Vol 38 ◽  
pp. 548-548 ◽  
Author(s):  
R JALAN ◽  
S OLDEDAMINK ◽  
A LEE ◽  
P HAYES ◽  
R WILLIAMS
2021 ◽  
Vol 23 (1) ◽  
pp. 224
Author(s):  
Karolina Orzeł-Gajowik ◽  
Krzysztof Milewski ◽  
Magdalena Zielińska

Acute liver failure (ALF) is a life-threatening consequence of hepatic function rapid loss without preexisting liver disease. ALF may result in a spectrum of neuropsychiatric symptoms that encompasses cognitive impairment, coma, and often death, collectively defined as acute hepatic encephalopathy (HE). Micro RNAs are small non-coding RNAs that modulate gene expression and are extensively verified as biomarker candidates in various diseases. Our systematic literature review based on the last decade’s reports involving a total of 852 ALF patients, determined 205 altered circulating miRNAs, of which 25 miRNAs were altered in the blood, regardless of study design and methodology. Selected 25 miRNAs, emerging predominantly from the analyses of samples obtained from acetaminophen overdosed patients, represent the most promising biomarker candidates for a diagnostic panel for symptomatic ALF. We discussed the role of selected miRNAs in the context of tissue-specific origin and its possible regulatory role for molecular pathways involved in blood–brain barrier function. The defined several common pathways for 15 differently altered miRNAs were relevant to cellular community processes, indicating loss of intercellular, structural, and functional components, which may result in blood-brain barrier impairment and brain dysfunction. However, a causational relationship between circulating miRNAs differential expression, and particular clinical features of ALF, has to be demonstrated in a further study.


2018 ◽  
Vol 52 (10) ◽  
pp. 924-948 ◽  
Author(s):  
Gerwyn Morris ◽  
Brisa S Fernandes ◽  
Basant K Puri ◽  
Adam J Walker ◽  
Andre F Carvalho ◽  
...  

Background: The blood–brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. Methods: In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood–brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood–brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. Results: Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood–brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood–brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood–brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a ‘leaky brain’. Conclusion: Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a ‘leaky gut’. The following evidence-based approaches, which address the leaky gut and blood–brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.


2015 ◽  
Vol 43 (4) ◽  
pp. 702-706 ◽  
Author(s):  
Keith D. Rochfort ◽  
Philip M. Cummins

An intact functioning blood–brain barrier (BBB) is fundamental to proper homoeostatic maintenance and perfusion of the central nervous system (CNS). Inflammatory damage to the unique microvascular endothelial cell monolayer that constitutes the luminal BBB surface, leading to elevated capillary permeability, has been linked to various neurological disorders ranging from ischaemic stroke and traumatic brain injury, to neurodegenerative disease and CNS infections. Moreover, the neuroinflammatory cascade that typically accompanies BBB failure in these circumstances has been strongly linked to elevated levels of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). This mini review will examine our current knowledge of how cytokines may dysregulate the interendothelial paracellular pathway leading to elevated BBB permeability. The mechanistic role of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase)-induced oxidative stress in these events will also be addressed.


Sign in / Sign up

Export Citation Format

Share Document