Could synergistic interactions among reactive oxygen species, proteinases, membrane-perforating enzymes, hydrolases, microbial hemolysins and cytokines be the main cause of tissue damage in infectious and inflammatory conditions?

1998 ◽  
Vol 51 (4) ◽  
pp. 337-346 ◽  
Author(s):  
I. Ginsburg
2015 ◽  
Vol 6 ◽  
pp. 1 ◽  
Author(s):  
Takashi Ishida ◽  
Satoshi Yamazaki ◽  
Hiromitsu Nakauchi ◽  
Masaaki Higashihara ◽  
Makoto Otsu ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3161 ◽  
Author(s):  
Luigi Di Luigi ◽  
Paolo Sgrò ◽  
Guglielmo Duranti ◽  
Stefania Sabatini ◽  
Daniela Caporossi ◽  
...  

Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud’s Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Nhat-Tu Le ◽  
James P. Corsetti ◽  
Janet L. Dehoff-Sparks ◽  
Charles E. Sparks ◽  
Keigi Fujiwara ◽  
...  

Although the exact mechanism through which NADPH oxidases (Nox’s) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.


2011 ◽  
Vol 360 (1-2) ◽  
pp. 189-195 ◽  
Author(s):  
Sudhakar Baluchamy ◽  
Prabakaran Ravichandran ◽  
Vani Ramesh ◽  
Zhenhua He ◽  
Ye Zhang ◽  
...  

2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Nívea Pereira de Sá ◽  
Caroline Miranda de Lima ◽  
Cleudiomar Inácio Lino ◽  
Paulo Jorge Sanches Barbeira ◽  
Ludmila de Matos Baltazar ◽  
...  

ABSTRACT Human cryptococcosis can occur as a primary or opportunistic infection and develops as an acute, subacute, or chronic systemic infection involving different organs of the host. Given the limited therapeutic options and the occasional resistance to fluconazole, there is a need to develop novel drugs for the treatment of cryptococcosis. In this report, we describe promising thiazole compounds 1, 2, 3, and 4 and explore their possible modes of action against Cryptococcus. To this end, we show evidence of interference in the Cryptococcus antioxidant system. The tested compounds exhibited MICs ranging from 0.25 to 2 μg/ml against Cryptococcus neoformans strains H99 and KN99α. Interestingly, the knockout strains for Cu oxidase and sarcosine oxidase were resistant to thiazoles. MIC values of thiazole compounds 1, 2, and 4 against these mutants were higher than for the parental strain. After the treatment of C. neoformans ATCC 24067 (or C. deneoformans) and C. gattii strain L27/01 (or C. deuterogattii) with thiazoles, we verified an increase in intracellular reactive oxygen species (ROS). Also, we verified the synergistic interactions among thiazoles and menadione, which generates superoxides, with fractional inhibitory concentrations (FICs) equal to 0.1874, 0.3024, 0.25, and 0.25 for the thiazole compounds 1, 2, 3, and 4, respectively. In addition, thiazoles exhibited antagonistic interactions with parasulphonatephenyl porphyrinato ferrate III (FeTPPS). Thus, in this work, we showed that the action of these thiazoles is related to an interference with the antioxidant system. These findings suggest that oxidative stress may be primarily related to the accumulation of superoxide radicals.


2020 ◽  
Author(s):  
Sandrine Huot ◽  
Cynthia Laflamme ◽  
Paul R. Fortin ◽  
Eric Boilard ◽  
Marc Pouliot

AbstractAutoimmune complexes are an important feature of several autoimmune diseases such as lupus, as they contribute to tissue damage through the activation of immune cells. Neutrophils, key players in lupus, interact with immune complexes through Fc gamma receptors (FcgR). Incubation of neutrophils with aggregated-IgGs caused degranulation and increased the surface expression of FcgRI within minutes in a concentration-dependent fashion. After 30 min, IgG aggregates (1 mg/ml) up-regulated FcgRI by 4.95 ± 0.45-fold. FcgRI-positive neutrophils reached 67.24% ± 6.88% on HA-IgGs stimulated neutrophils, from 3.12% ± 1.62% in non-stimulated cells, ranking IgG-aggregates among the most potent known agonists. FcgRIIa, and possibly FcgRIIIa, appeared to mediate this up-regulation. Also, FcgRI-dependent signaling proved necessary for reactive oxygen species (ROS) production in response to IgG-aggregates. Finally, combinations of bacterial materials with aggregates dramatically boosted ROS production. This work suggests FcgRI as an essential component in the response of human neutrophils to immune complexes leading to the production of ROS, which may help explain how neutrophils contribute to tissue damage associated with immune complex-associated diseases, such as lupus.


2008 ◽  
Vol 48 (12) ◽  
pp. 539-545 ◽  
Author(s):  
Takeshi AOYAMA ◽  
Kazutoshi HIDA ◽  
Satoshi KURODA ◽  
Toshitaka SEKI ◽  
Shunsuke YANO ◽  
...  

2004 ◽  
Vol 10 (14) ◽  
pp. 1611-1626 ◽  
Author(s):  
Carlo Bergamini ◽  
Stefania Gambetti ◽  
Alessia Dondi ◽  
Carlo Cervellati

Sign in / Sign up

Export Citation Format

Share Document