Influence of the hydrophobic material content in the gas diffusion electrodes on the performance of a PEM fuel cell

2003 ◽  
Vol 28 (6) ◽  
pp. 625-627 ◽  
Author(s):  
J Moreira
1998 ◽  
Vol 43 (24) ◽  
pp. 3703-3709 ◽  
Author(s):  
C. Boyer ◽  
S. Gamburzev ◽  
O. Velev ◽  
S. Srinivasan ◽  
A.J. Appleby

2012 ◽  
Vol 24 (12) ◽  
pp. 2354-2364 ◽  
Author(s):  
Hussein Gharibi ◽  
Monireh Faraji ◽  
Mehdi Kheirmand

Author(s):  
Zhongying Shi ◽  
Xia Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrei Kulikovsky

Impedance of all oxygen transport processes in PEM fuel cell has negative real part in some frequency domain. A kernel for calculation of distribution of relaxation times (DRT) of a PEM fuel cell is suggested. The kernel is designed for capturing impedance with negative real part and it stems from the equation for impedance of oxygen transport through the gas-diffusion transport layer (doi:10.1149/2.0911509jes). Using recent analytical solution for the cell impedance, it is shown that DRT calculated with the novel K2 kernel correctly captures the GDL transport peak, whereas the classic DRT based on the RC-circuit (Debye) kernel misses this peak. Using K2 kernel, analysis of DRT spectra of a real PEMFC is performed. The leftmost on the frequency scale DRT peak represents oxygen transport in the channel, and the rightmost peak is due to proton transport in the cathode catalyst layer. The second, third, and fourth peaks exhibit oxygen transport in the GDL, faradaic reactions on the cathode side, and oxygen transport in the catalyst layer, respectively.


Author(s):  
Z. Shi ◽  
X. Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two-dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


2020 ◽  
Author(s):  
Peng Cheng ◽  
Chasen Tongsh ◽  
Jinqiao Liang ◽  
Zhi Liu ◽  
Qing Du ◽  
...  

Abstract In this study, an experimental study has been performed to investigate the effect of in-plane distribution of Pt and Nafion in membrane electrode assembly (MEA) on proton exchange membrane (PEM) fuel cell. Two types of MEAs, such as the gradient and uniform distributions of Pt catalyst and Nafion, are compared under various operating conditions including cathode flow rate, MEA preparation method, Pt loading and relative humidity (RH). The catalyst ink is sprayed onto Nafion membrane or gas diffusion layer (GDL) through a pneumatic automatic spraying device manufactured by ourselves. MEA is prepared by hot pressing. The results show that as flow rate decreases, the MEA with gradient distribution will show a higher voltage at a high current density for catalyst coated membrane (CCM) method. For CCM method, gradient distribution can optimize cell performance under low cathode flow rate, but the optimization effect is weakened when flow rate is too low. Compared with CCM method, the gas diffusion electrode (GDE) method makes the difference value of Ohmic resistance between gradient and uniform distribution very larger, resulting in poor performance improvement. For GDE method, gradient distribution shows no optimization for cell performance under different Pt loadings and RH, but a smaller average Pt loading and fully-humidified reactants can reduce the performance distinction between uniform and gradient distribution. The gradient design of Pt and Nafion along the in-plane direction is a promising strategy to improve the performance of PEM fuel cell. Reasonably controlling the gradient distribution of Pt in the plane direction of cathode can reduce the amount of Pt catalysts and improve efficiency.


Sign in / Sign up

Export Citation Format

Share Document