Influence of striate lesions on visually evoked activity in tree shrew temporal cortex

1979 ◽  
Vol 4 (3) ◽  
pp. 327-332
Author(s):  
Peter G. Kaufmann ◽  
Paul S. Blum ◽  
George G. Somjen
1971 ◽  
Vol 74 (1, Pt.2) ◽  
pp. 1-29 ◽  
Author(s):  
H. Killackey ◽  
M. Snyder ◽  
I. T. Diamond
Keyword(s):  

2019 ◽  
Author(s):  
Kamal Shadi ◽  
Eva Dyer ◽  
Constantine Dovrolis

AbstractHaving a structural network representation of connectivity in the brain is instrumental in analyzing communication dynamics and information processing in the brain. In this work, we make steps towards understanding multi-sensory information flow and integration using a network diffusion approach. In particular, we model the flow of evoked activity, initiated by stimuli at primary sensory regions, using the Asynchronous Linear Threshold (ALT) diffusion model. The ALT model captures how evoked activity that originates at a given region of the cortex “ripples through” other brain regions (referred to as an activation cascade). By comparing the model results to functional datasets based on Voltage Sensitive Dye (VSD) imaging, we find that in most cases the ALT model predicts the temporal ordering of an activation cascade correctly. Our results on the Mouse Connectivity Atlas from the Allen Institute for Brain Science show that a small number of brain regions are involved in many primary sensory streams – the claustrum and the parietal temporal cortex being at the top of the list. This suggests that the cortex relies on an hourglass architecture to first integrate and compress multi-sensory information from multiple sensory regions, before utilizing that lower-dimensionality representation in higher-level association regions and more complex cognitive tasks.


2000 ◽  
Vol 83 (5) ◽  
pp. 3133-3139 ◽  
Author(s):  
Vincent P. Clark ◽  
Sean Fannon ◽  
Song Lai ◽  
Randall Benson ◽  
Lance Bauer

Previous studies have found that the P300 or P3 event-related potential (ERP) component is useful in the diagnosis and treatment of many disorders that influence CNS function. However, the anatomic locations of brain regions involved in this response are not precisely known. In the present event-related functional magnetic resonance imaging (fMRI) study, methods of stimulus presentation, data acquisition, and data analysis were optimized for the detection of brain activity in response to stimuli presented in the three-stimulus oddball task. This paradigm involves the interleaved, pseudorandom presentation of single block-letter target and distractor stimuli that previously were found to generate the P3b and P3a ERP subcomponents, respectively, and frequent standard stimuli. Target stimuli evoked fMRI signal increases in multiple brain regions including the thalamus, the bilateral cerebellum, and the occipital-temporal cortex as well as bilateral superior, medial, inferior frontal, inferior parietal, superior temporal, precentral, postcentral, cingulate, insular, left middle temporal, and right middle frontal gyri. Distractor stimuli evoked an fMRI signal change bilaterally in inferior anterior cingulate, medial frontal, inferior frontal, and right superior frontal gyri, with additional activity in bilateral inferior parietal lobules, lateral cerebellar hemispheres and vermis, and left fusiform, middle occipital, and superior temporal gyri. Significant variation in the amplitude and polarity of distractor-evoked activity was observed across stimulus repetitions. No overlap was observed between target- and distractor-evoked activity. These event-related fMRI results shed light on the anatomy of responses to target and distractor stimuli that have proven useful in many ERP studies of healthy and clinically impaired populations.


2020 ◽  
Vol 4 (4) ◽  
pp. 1030-1054
Author(s):  
Kamal Shadi ◽  
Eva Dyer ◽  
Constantine Dovrolis

Having a structural network representation of connectivity in the brain is instrumental in analyzing communication dynamics and neural information processing. In this work, we make steps towards understanding multisensory information flow and integration using a network diffusion approach. In particular, we model the flow of evoked activity, initiated by stimuli at primary sensory regions, using the asynchronous linear threshold (ALT) diffusion model. The ALT model captures how evoked activity that originates at a given region of the cortex “ripples through” other brain regions (referred to as an activation cascade). We find that a small number of brain regions–the claustrum and the parietal temporal cortex being at the top of the list–are involved in almost all cortical sensory streams. This suggests that the cortex relies on an hourglass architecture to first integrate and compress multisensory information from multiple sensory regions, before utilizing that lower dimensionality representation in higher level association regions and more complex cognitive tasks.


2009 ◽  
Vol 20 (4) ◽  
pp. 997-1011 ◽  
Author(s):  
R. D. Chomsung ◽  
H. Wei ◽  
J. D. Day-Brown ◽  
H. M. Petry ◽  
M. E. Bickford

2005 ◽  
Vol 17 (9) ◽  
pp. 1396-1409 ◽  
Author(s):  
W. A. Teder-Sälejärvi ◽  
F. Di Russo ◽  
J. J. McDonald ◽  
S. A. Hillyard

Spatial constraints on multisensory integration of auditory (A) and visual (V) stimuli were investigated in humans using behavioral and electrophysiological measures. The aim was to find out whether cross-modal interactions between A and V stimuli depend on their spatial congruity, as has been found for multisensory neurons in animal studies (Stein & Meredith, 1993). Randomized sequences of unimodal (A or V) and simultaneous bimodal (AV) stimuli were presented to right-or left-field locations while subjects made speeded responses to infrequent targets of greater intensity that occurred in either or both modalities. Behavioral responses to the bimodal stimuli were faster and more accurate than to the uni-modal stimuli for both same-location and different-location AV pairings. The neural basis of this cross-modal facilitation was studied by comparing event-related potentials (ERPs) to the bimodal AV stimuli with the summed ERPs to the unimodal A and V stimuli. These comparisons revealed neural interactions localized to the ventral occipito-temporal cortex (at 190 msec) and to the superior temporal cortical areas (at 260 msec) for both same-and different-location AV pairings. In contrast, ERP interactions that differed according to spatial congruity included a phase and amplitude modulation of visual-evoked activity localized to the ventral occipito-temporal cortex at 100-400 msec and an amplitude modulation of activity localized to the superior temporal region at 260-280 msec. These results demonstrate overlapping but distinctive patterns of multisensory integration for spatially congruent and incongruent AV stimuli.


2011 ◽  
Vol 23 (8) ◽  
pp. 1911-1920 ◽  
Author(s):  
Maria Ida Gobbini ◽  
Claudio Gentili ◽  
Emiliano Ricciardi ◽  
Claudia Bellucci ◽  
Pericle Salvini ◽  
...  

We designed an fMRI experiment comparing perception of human faces and robotic faces producing emotional expressions. The purpose of our experiment was to investigate engagement of different parts of the social brain by viewing these animate and inanimate agents. Both human and robotic face expressions evoked activity in face-responsive regions in the fusiform gyrus and STS and in the putative human mirror neuron system. These results suggest that these areas mediate perception of agency, independently of whether the agents are living or not. By contrast, the human faces evoked stronger activity than did robotic faces in the medial pFC and the anterior temporal cortex—areas associated with the representation of others' mental states (theory of mind), whereas robotic faces evoked stronger activity in areas associated with perception of objects and mechanical movements. Our data demonstrate that the representation of the distinction between animate and inanimate agents involves areas that participate in attribution of mental stance.


Author(s):  
J. P. Brunschwig ◽  
R. M. McCombs ◽  
R. Mirkovic ◽  
M. Benyesh-Melnick

A new virus, established as a member of the herpesvirus group by electron microscopy, was isolated from spontaneously degenerating cell cultures derived from the kidneys and lungs of two normal tree shrews. The virus was found to replicate best in cells derived from the homologous species. The cells used were a tree shrew cell line, T-23, which was derived from a spontaneous soft tissue sarcoma. The virus did not multiply or did so poorly for a limited number of passages in human, monkey, rodent, rabbit or chick embryo cells. In the T-23 cells, the virus behaved as members of the subgroup B of herpesvirus, in that the virus remained primarily cell associated.


Sign in / Sign up

Export Citation Format

Share Document