Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions

2003 ◽  
Vol 61 (2) ◽  
pp. 125-141 ◽  
Author(s):  
M.H Jorenush ◽  
A.R Sepaskhah
Soil Research ◽  
1982 ◽  
Vol 20 (4) ◽  
pp. 305 ◽  
Author(s):  
DS McIntyre

The rate of salinization by capillary rise from a saline water table in wet clay soil cores, 0.60, 0.75 and 0.90 m long, and 0.25 m in diameter, is described. Tensiometer-pressure potential and electrical conductivity were measured as a function of time at vertical spacings of 0.15 m. Initially a relatively rapid rise of saline water occurred to a height of 0.30 m above the water table, but subsequent movement was very slow. Although the potential evaporation rate was only 1.0 mm/day, drying of the surface occurred quickly, and proceeded down the cores, reducing the upward moisture flux to a very low value. The salinization hazard of such a soil is low, but the possibility of application of the measurement to more permeable soils, in which salinization may be more likely, is discussed.


2019 ◽  
Vol 213 ◽  
pp. 486-498 ◽  
Author(s):  
Guanfang Sun ◽  
Yan Zhu ◽  
Ming Ye ◽  
Jinzhong Yang ◽  
Zhongyi Qu ◽  
...  

Author(s):  
José T. A. Souza ◽  
Járisson C. Nunes ◽  
Lourival F. Cavalcante ◽  
Juliete A. da S. Nunes ◽  
Walter E. Pereira ◽  
...  

ABSTRACT An experiment was undertaken in Remígio County, Paraíba State, Brazil, from July 2013 to May 2014, in order to evaluate the effects of saline water irrigation, bovine biofertilizer, and potassium type on soil salinity, leaf macronutrient composition, and production of yellow passion fruit cv. BRS Gigante Amarelo. Treatments were distributed in randomized blocks, arranged in a 2 × 2 × 2 factorial design, with reference to electrical conductivity of the water (0.35 and 4.00 dS m-1), soil with and without bovine biofertilizer, and application of potassium chloride as a conventional treatment (KCl) and in an organic polymer-coated form, supplied monthly. Bovine biofertilizer was diluted in non-saline water (proportion, 50%) and applied via water at a volume of 6 L plant-1 one day before transplanting, and then every 90 days. The combination of saline water with bovine biofertilizer raised soil salinity to a similar proportion when comparing saline water and conventional potassium chloride with saline water and polymer-coated potassium chloride. The increase in water saline concentrations associated with both types of potassium chloride and with bovine biofertilizer elevated soil salinity from non-saline to saline. On starting to flower, plants of cv. BRS Gigante Amarelo were deficient in macronutrients other than nitrogen and potassium, but nonetheless produced fruits of an adequate mass for the consumer market.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ruibo Sun ◽  
Xiaogai Wang ◽  
Yinping Tian ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil. Understanding how microbial communities respond during saline soil amelioration is crucial, given the key roles soil microbes play in ecosystem succession. In the present study, the community composition, diversity, assembly and potential ecological functions of archaea, bacteria and fungi in coastal saline soil under amelioration practices of freezing saline water irrigation, plastic mulching and the combination of freezing saline water irrigation and plastic mulching were assessed through high-throughput sequencing. These amelioration practices decreased archaeal and increased bacterial richness while leaving fungal richness little changed in the surface soil. Functional prediction revealed that the amelioration practices, especially winter irrigation with saline water and film mulched in spring, promoted a community harboring heterotrophic features. β-null deviation analysis illustrated that amelioration practices weakened the deterministic processes in structuring coastal saline soil microbial communities. These results advanced our understanding of the responses of the soil microbiome to amelioration practices and provided useful information for developing microbe-based remediation approaches in coastal saline soils.


Author(s):  
Manizhe Zarei ◽  
Omid Bozorg-Haddad ◽  
Vijay P. Singh

Abstract Throughout history, natural events such as floods, droughts, fires, lightning, and storms have caused significant losses of life and property. To mitigate the hazardous consequences of such events, or ‘failures’ (as they are referred to), a number of questions can be asked, such as: ‘What are the causes of these events?’; ‘What natural factors cause these events?’; ‘What is the human role in the occurrence of these events?’; ‘Who is to blame for such events?’; and ‘What actions should be taken to prevent such events from happening?’ The forensic engineering approach allows us to answer these questions. Forensic engineering, a term developed in recent years, allows us to identify the causes of events by looking back and analyzing the relationship between an event's causes and their consequences; it is a useful tool for determining the natural or human causes of events that lead to disasters. Forensic hydrology is a branch of forensic engineering and applies directly to floods and droughts but is not limited to these events. Forensic hydrology is also used for the historical assessment and analysis of events such as water pollution, drying of lakes and rivers, the drying up (or significant reduction in the water table) of wells, and the infiltration of saline water into freshwater. Forensic hydrology analyzes event evidence and data from a variety of perspectives. Examining the origins and mechanisms of such events to find their causes can lead to better water management, allocation and improved use, and can also help to prevent or minimize severe damage. This chapter provides an introduction to forensic engineering and describes the processes which should be followed to evaluate hazardous events.


2020 ◽  
pp. 1-12
Author(s):  
Shengqiang Tang ◽  
Dongli She ◽  
Hongde Wang

Revealing the influences of soil salinity on soil structure and hydraulic properties contributes to understanding the mechanism of salinity restraining rehabilitation of saline sodic soil in coastal area. After being passed through a 1 mm sieve, silt loam and silty clay were irrigated with saline water to achieve different soil salinities to highlight the effect of irrigation salinity on aggregate formation from primary particles. Three irrigation events with different saline water were conducted in the same 2 mo interval in soil columns; the soil columns were subjected to natural evaporation during the interval. The soil salinity, soil structure, soil–water characteristic curve, and saturated hydraulic conductivity (Ks) results were determined after the end of the third drying subprocess. The results showed that the proportion of water-stable macroaggregates (0.25–2 mm) in the silt loam and silty clay increased as the soil salt content (SSC) increased. Under the same matric suction, the retention capacity and plant-available water capacity (PAWC) of the silt loam first increased and then decreased, with the SSC increasing to a maximum of approximately 14.5 g kg−1. The retention capacity of the silty clay increased with the SSC, whereas the PAWC decreased with the SSC. The Ks of the silt loam increased with SSC. This study reveals the effects of soil salinity on aggregate formation from primary particles in wetting–drying cycles and describes the corresponding changes in hydraulic properties, which influence the rehabilitation of saline sodic soils in coastal areas.


Sign in / Sign up

Export Citation Format

Share Document