Effects of environmental factors on extrahepatic Cyp2e1 gene expression in mice

1998 ◽  
Vol 95 ◽  
pp. 101
Author(s):  
E. Sampol ◽  
P.H. Villard ◽  
F. Puyoou ◽  
E.M. Sérée ◽  
H. Point-Scoma ◽  
...  
2018 ◽  
Vol 9 (1) ◽  
pp. 378-392 ◽  
Author(s):  
Martin Helmkampf ◽  
M. Renee Bellinger ◽  
Monika Frazier ◽  
Misaki Takabayashi

2020 ◽  
Author(s):  
Tatyana Dobreva ◽  
David Brown ◽  
Jong Hwee Park ◽  
Matt Thomson

AbstractAn individual’s immune system is driven by both genetic and environmental factors that vary over time. To better understand the temporal and inter-individual variability of gene expression within distinct immune cell types, we developed a platform that leverages multiplexed single-cell sequencing and out-of-clinic capillary blood extraction to enable simplified, cost-effective profiling of the human immune system across people and time at single-cell resolution. Using the platform, we detect widespread differences in cell type-specific gene expression between subjects that are stable over multiple days.SummaryIncreasing evidence implicates the immune system in an overwhelming number of diseases, and distinct cell types play specific roles in their pathogenesis.1,2 Studies of peripheral blood have uncovered a wealth of associations between gene expression, environmental factors, disease risk, and therapeutic efficacy.4 For example, in rheumatoid arthritis, multiple mechanistic paths have been found that lead to disease, and gene expression of specific immune cell types can be used as a predictor of therapeutic non-response.12 Furthermore, vaccines, drugs, and chemotherapy have been shown to yield different efficacy based on time of administration, and such findings have been linked to the time-dependence of gene expression in downstream pathways.21,22,23 However, human immune studies of gene expression between individuals and across time remain limited to a few cell types or time points per subject, constraining our understanding of how networks of heterogeneous cells making up each individual’s immune system respond to adverse events and change over time.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


2020 ◽  
Vol 21 (7) ◽  
pp. 459-470
Author(s):  
Keguang Chen ◽  
Ruichen Guo ◽  
Chunmin Wei

Aim: To evaluate whether the synonymous mutant rs2515641 could affect cytochrome P450 2E1 ( CYP2E1) expression and the response to acetaminophen (APAP) or triptolide (TP) treatment. Materials & methods: HepG2 cells were transfected with lentiviral vector containing either CYP2E1-1263C or CYP2E1-1263T. Some of these recombinant cells were then treated with APAP or TP. CYP2E1 gene expression was detected by PCR and western blot. Results: CYP2E1 gene expression decreased significantly both in mRNA and protein level after rs2515641 mutation, indicating that this polymorphism can affect both transcription and translation. Furthermore, rs2515641 mutation dramatically changes the response of CYP2E1 expression to APAP or TP treatment. Conclusion: Rs2515641 significantly changes CYP2E1 expression and function, which would be expected to affect drug disposition and response.


2017 ◽  
Vol 42 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Chowdhury Rafiqul Ahsan ◽  
Farah Shamma ◽  
Nazmul Ahsan ◽  
Moutusee Jubaida Islam

Haemolysin (HlyE) is an essential virulence factor of Salmonella, Escherichia coli and other enteric bacteria. Although, a substantial degree of haemolytic activity is not seen under normal culture conditions in these organisms, however, the non-haemolytic E. coli K-12 showed significant haemolytic activity under stress conditions. To confirm this phenomenon in other enteric bacteria, in this study, the production of haemolysin in Salmonella enterica serovar Typhi under stress conditions, like oxygen and glucose starvations in vitro was investigated during March-December 2015. For this, S. typhi was cultured under oxygen or glucose starvation condition separately and this organism showed high haemolytic activity. The activity was found to be much higher when both the conditions were applied together. Also, the role of the transcription factor SlyA of S. typhi was investigated on induction of haemolytic activity. When E. coli K-12 was transformed with plasmid containing the gene of SlyA, the recombinant bacteria without any starvation condition, also showed similar haemolytic activity that was exhibited by S. typhi grown under oxygen and glucose starvation conditions. All these findings suggest that both environmental factors like oxygen or glucose starvation and overexpression of the transcription factor SlyA have important role in inducing hlyE gene expression in S. typhi.


2000 ◽  
Vol 37 (6) ◽  
pp. 1470-1479 ◽  
Author(s):  
Xiaofeng Yang ◽  
Martin S. Goldberg ◽  
Taissia G. Popova ◽  
George B. Schoeler ◽  
Stephen K. Wikel ◽  
...  

2010 ◽  
Vol 235 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Hui Yang ◽  
Yuqiang Nie ◽  
Yuyuan Li ◽  
Yu-Jui Yvonne Wan

2021 ◽  
Author(s):  
Yoo-Ah Kim ◽  
Ermin Hodzic ◽  
Ariella Saslafsky ◽  
Damian Wojtowicz ◽  
Bayarbaatar Amgalan ◽  
...  

Background: Environmental exposures such as smoking are widely recognized risk factors in the emergence of lung diseases such as lung cancer and acute respiratory distress syndrome (ARDS). However, the strength of environmental exposures is difficult to measure, making it challenging to understand their impacts. On the other hand, some COVID-19 patients develop ARDS in an unfavorable disease progression and smoking has been suggested as a potential risk factor among others. Yet initial studies on COVID-19 cases reported contradictory results on the effects of smoking on the disease. Some suggest that smoking might have a protective effect against it while other studies report an increased risk. A better understanding of how the exposure to smoking and other environmental factors affect biological processes relevant to SARS-CoV-2 infection and unfavorable disease progression is needed. Approach: In this study, we utilize mutational signatures associated with environmental factors as sensors of their exposure level. Many environmental factors including smoking are mutagenic and leave characteristic patterns of mutations, called mutational signatures, in affected genomes. We postulated that analyzing mutational signatures, combined with gene expression, can shed light on the impact of the mutagenic environmental factors to the biological processes. In particular, we utilized mutational signatures from lung adenocarcinoma (LUAD) data set collected in TCGA to investigate the role of environmental factors in COVID-19 vulnerabilities. Integrating mutational signatures with gene expression in normal tissues and using a pathway level analysis, we examined how the exposure to smoking and other mutagenic environmental factors affects the infectivity of the virus and disease progression. Results: By delineating changes associated with smoking in pathway-level gene expression and cell type proportions, our study demonstrates that mutational signatures can be utilized to study the impact of exogenous mutagenic factors on them. Consistent with previous findings, our analysis showed that smoking mutational signature (SBS4) is associated with activation of cytokines mediated singling pathways, leading to inflammatory responses. Smoking related changes in cell composition were also observed, including the correlation of SBS4 with the expansion of goblet cells. On the other hand, increased basal cells and decreased ciliated cells in proportion were associated with the strength of a different mutational signature (SBS5), which is present abundantly but not exclusively in smokers. In addition, we found that smoking increases the expression levels of genes that are upregulated in severe COVID-19 cases. Jointly, these results suggest an unfavorable impact of smoking on the disease progression and also provide novel findings on how smoking impacts biological processes in lung.


Sign in / Sign up

Export Citation Format

Share Document