Climate Change and Shifts in Potential Tree Species Range Limits in the Great Lakes Region

2002 ◽  
Vol 28 (4) ◽  
pp. 555-567 ◽  
Author(s):  
Karen V. Walker ◽  
Margaret B. Davis ◽  
Shinya Sugita
2020 ◽  
Author(s):  
Yassine Messaoud ◽  
Anya Reid ◽  
Nadezhda M. Tchebakova ◽  
Annika Hofgaard ◽  
Faouzi Messsaoud

Abstract BackgroundThe climate variables effect on tree growth in boreal and temperate forests has received increased interest in the global context of climate change. However, most studies are geographically limited and involved few tree species. Here, sixteen tree species across western North America were used to investigate tree response to climate change at the species range scale. MethodsForest inventory data from 36,944 stands established between 1600 and 1968 throughout western Canada and USA were summarized. Height growth (total height at breast-height age of 50 years) of healthy dominant and co-dominant trees were related to annual and summer temperatures, annual and summer Palmer Drought Severity Index (PDSI, and tree establishment date (ED). Climate-induced height growth patterns were then tested to determine links to spatial environment (soil conditions and geographic locations), species range (coastal, interior, and both ranges) and species traits (shade tolerance and leaf form), using linear mixed model for the global height growth and general linear model to test the height growth patterns for each species. ResultsIncrease of temperatures and PDSI had a positive effect on height growth for most of the study species, whereas Alaska yellow-cedar (Chamaecyparis nootkatensis, (D. Don) Spach) height growth declined with ED. All explaining variables and the interactions explained 59% of the total height growth variance. Although tree height growth response was species-specific, increased height growth during the 20th century was more pronounced for coastal ranged species, high shade tolerant species, and broadleaf species. Furthermore, height growth increase occurred mostly on rich soil, at the northernmost species range, and, unexpectedly, at lower elevations. A decline in height growth for some species further north and especially higher in elevation possibly related to increased cloudiness and precipitation. However, drought conditions remain in interior areas despite moving northward and upward that decrease height growth. ConclusionThese results highlight the general trend (species characteristics and range) and the species-specific height patterns, indicating the spatio-temporal complexity of the growth response to recent global climate change.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1276
Author(s):  
Anna Walkiewicz ◽  
Adrianna Rafalska ◽  
Piotr Bulak ◽  
Andrzej Bieganowski ◽  
Bruce Osborne

Forests contribute strongly to global carbon (C) sequestration and the exchange of greenhouse gases (GHG) between the soil and the atmosphere. Whilst the microbial activity of forest soils is a major determinant of net GHG exchange, this may be modified by the presence of litter through a range of mechanisms. Litter may act as a physical barrier modifying gas exchange, water movement/retention and temperature/irradiance fluctuations; provide a source of nutrients for microbes; enhance any priming effects, and facilitate macro-aggregate formation. Moreover, any effects are influenced by litter quality and regulated by tree species, climatic conditions (rainfall, temperature), and forest management (clear-cutting, fertilization, extensive deforestation). Based on climate change projections, the importance of the litter layer is likely to increase due to an litter increase and changes in quality. Future studies will therefore have to take into account the effects of litter on soil CO2 and CH4 fluxes for various types of forests globally, including the impact of climate change, insect infestation, and shifts in tree species composition, as well as a better understanding of its role in monoterpene production, which requires the integration of microbiological studies conducted on soils in different climatic zones.


2000 ◽  
Vol 41 (1) ◽  
pp. 1-28 ◽  
Author(s):  
PETER ROBERTSHAW ◽  
DAVID TAYLOR

The histories of pre-colonial states in the Great Lakes region of Central Africa have engaged scholars for more than a century. First encountered by Europeans in the 1860s during the search for the source of the Nile, these states and their rulers inspired both admiration and frustration in their visitors. On the one hand, explorers were impressed by the power of the rulers and the complexities of their bureaucracies, but on the other, they were annoyed by the apparent vacillation of the monarchs in responding to their demands. From the historian's perspective, these initial encounters soon led to questions about the origins and longevity of these states. Stories of origins were encapsulated in myths and legends that missionaries began to record around the turn of the twentieth century, while efforts to elicit lists of kings who had ruled each state introduced African leaders to European-style historiography.


Sign in / Sign up

Export Citation Format

Share Document