Inhibitory Erects of Selenium, Vitamin A and Butylated Hydroxytoluene on Growth of Human Maxillary Cancer Cells In Vitro

1996 ◽  
Vol 23 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Yuzo Yamamoto ◽  
Isao Inoue ◽  
Tomohiko Takasaki ◽  
Hiroaki Takahashi
2002 ◽  
pp. 87-102 ◽  
Author(s):  
X-k Zhang

Apoptosis represents an effective way to eliminate cancer cells. Unfortunately, advanced prostate tumors eventually progress to androgen-independent tumors, which are resistant to current therapeutic approaches that act by triggering apoptosis. Vitamin A and its natural and synthetic analogs (retinoids) induce apoptosis in prostate cancer cells in vitro and in animal models, mainly through induction of retinoic acid receptor-beta (RARbeta). Expression levels of RARbeta, however, are significantly reduced in hormone-independent prostate cancer cells. Recently, a new class of synthetic retinoids related to 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN) (also called CD437) that effectively induces apoptosis of both hormone-dependent and -independent prostate cancer cells in a retinoid receptor-independent manner was identified and has drawn a lot of attention in the field. The apoptotic effect of AHPN requires expression of orphan receptor TR3 (also called nur77 or NGFI-B). Paradoxically, TR3 expression is also induced by androgen and other mitogenic agents in prostate cancer cells to confer their proliferation. The recent finding that TR3 migrates from the nucleus to mitochondria to trigger apoptosis in response to AHPN suggests that the opposing biological activities of TR3 are regulated by its subcellular localization. Thus, agents that induce translocalization of TR3 from the nucleus to mitochondria will have improved efficacy against prostate cancer. TR3, therefore, represents an unexplored molecule that may be an ideal target for developing new agents for prostate cancer therapy.


2010 ◽  
Vol 396 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Norihiko Narita ◽  
Shigeharu Fujieda ◽  
Yuichi Kimura ◽  
Yumi Ito ◽  
Yoshimasa Imoto ◽  
...  

2014 ◽  
Vol 28 (2) ◽  
pp. 282-291 ◽  
Author(s):  
Renata Kontek ◽  
Marta Jakubczak ◽  
Ksenia Matlawska-Wasowska
Keyword(s):  

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2018 ◽  
Author(s):  
F Guo ◽  
Z Yang ◽  
J Xu ◽  
J Sehouli ◽  
AE Albers ◽  
...  

Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Lisni Noraida Waruwu ◽  
Maria Bintang ◽  
Bambang Pontjo Priosoeryanto

Green tea (Camellia sinensis) is one of traditional plants that have the potential as an anticancer. The sample used in this research commercial green tea extract. The purpose of this study was to test the antiproliferation activity of green tea extract on breast cancer cell MCM-B2 in vitro. Green tea extract fractionated using three solvents, ie water, ethanol 70%, and n-hexane. Extract and fraction of green tea water have value Lethality Concentration 50 (LC50) more than 1000 ppm. The fraction of ethanol 70% and n-hexane had an LC50 value of 883.48 ppm and 600.56 ppm, respectively. The results of the phytochemical screening of green tea extract are flavonoids, tannins, and saponins, while the phytochemical screening results of n-hexane fraction are flavonoids and tannins. Antiproliferation activity was tested on breast cancer cells MCM-B2 and normal cells Vero by trypan blue staining method. The highest MCM-B2 cell inhibitory activity was achieved at a concentration of 13000 ppm green tea extract and 1000 ppm of n-hexane fraction, 59% and 59%, respectively. The extract and n-hexane fraction of green tea are not toxic to normal Vero cells characterized by not inhibiting normal cell proliferation. Keywords: antiproliferative, cancer cell MCM-B2, commercial green tea, cytotoxicity


Sign in / Sign up

Export Citation Format

Share Document