Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark

2000 ◽  
Vol 37 (2) ◽  
pp. 127-137 ◽  
Author(s):  
F.M. Aarestrup ◽  
Y. Agerso ◽  
P. Gerner–Smidt ◽  
M. Madsen ◽  
L.B. Jensen
2011 ◽  
Vol 74 (10) ◽  
pp. 1639-1648 ◽  
Author(s):  
CINDY-LOVE TREMBLAY ◽  
ANN LETELLIER ◽  
SYLVAIN QUESSY ◽  
MARTINE BOULIANNE ◽  
DANIELLE DAIGNAULT ◽  
...  

This study was conducted to characterize the antimicrobial resistance determinants and investigate plasmid colocalization of tetracycline and macrolide genes in Enterococcus faecalis and Enterococcus faecium from broiler chicken and turkey flocks in Canada. A total of 387 E. faecalis and E. faecium isolates were recovered from poultry cecal contents from five processing plants. The percentages of resistant E. faecalis and E. faecium isolates, respectively, were 88.1 and 94% to bacitracin, 0 and 0.9% to chloramphenicol, 0.7 and 14.5% to ciprofloxacin, 72.6 and 80.3% to erythromycin, 3.7 and 41% to flavomycin, 9.6 and 4.3% (high-level resistance) to gentamicin, 25.2 and 17.1% (high-level resistance) to kanamycin, 100 and 94% to lincomycin, 0 and 0% to linezolid, 2.6 and 20.5% to nitrofurantoin, 3 and 27.4% to penicillin, 98.5 and 89.7% to quinupristin-dalfopristin, 7 and 12.8% to salinomycin, 46.7 and 38.5% (high-level resistance) to streptomycin, 95.6 and 89.7% to tetracycline, 73 and 75.2% to tylosin, and 0 and 0% to vancomycin. One predominant multidrug-resistant phenotypic pattern was identified in both E. faecalis and E. faecium (bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, tetracycline, and tylosin). These isolates were further examined by PCR and sequencing for the genes encoding their antimicrobial resistance. Various combinations of vatD, vatE, bcrR, bcrA, bcrB, bcrD, ermB, msrC, linB, tetM, and tetO genes were detected, and ermB, tetM, and bcrB were the most common antimicrobial resistance genes identified. For the first time, plasmid extraction and hybridization revealed colocalization of tetO and ermB genes on a ca. 11-kb plasmid in E. faecalis isolates, and filter mating experiments demonstrated its transferability. Results indicate that the intestinal enterococci of healthy poultry, which can contaminate poultry meat at slaughter, could be a reservoir for quinupristin-dalfopristin, bacitracin, tetracycline, and macrolide resistance genes.


2021 ◽  
Vol 16 (1) ◽  
pp. 54-63
Author(s):  
A. V. Fedorova ◽  
G. A. Klyasova ◽  
I. N. Frolova ◽  
S. A. Khrulnova ◽  
A. V. Vetokhina ◽  
...  

Objective: to determine antimicrobial resistance of Enterococcus faecium and Enterococcus faecalis isolated from blood culture of hematological patients during different study periods.Materials and methods. Antimicrobial susceptibility of Enterococcus spp., collected as part of the multicenter study was tested by the broth microdilution method (USA Clinical and Laboratory Standards Institute (CLSI), 2018), to daptomycin by Etest (bioMeriéux, France). High-level gentamicin resistance (HLGR) and high-level streptomycin resistance (HLSR) was performed by the agar dilution method (CLSI (Oxoid, UK), 2018).Results. The susceptibility of 366 E. faecium (157 in 2002-2009 and 209 in 2010-2017) and 86 E. faecalis (44 in 20022009 and 42 in 2010-2017) was studied. In the second study period (2010-2017) the rise of vancomycin-resistant E. faecium (VREF) increased from 8.3 % to 23.4 % (p = 0.0001), and two linezolid-resistant (LREF) were identified. All VREF and LREF remained susceptible to daptomycin and tigecycline. The rate of susceptible to tetracycline E. faecium remained the same (73.9 and 74.6 %), and an increase in susceptibility to chloramphenicol (74.5 and 82.3 %) was observed. Susceptibility of E. faecium to tetracycline was detected with almost the same rate and in a part of isolates, the increase of susceptibility to chloramphenicol was registered during the analyzed periods. The rise of E. faecium susceptible to HLGR and HLSR has increased significantly in 2010-2017 compared to 2002-2009. Erythromycin, levofloxacin, ampicillin and penicillin had the least activity against E. faecium (less than 5 %).All E. faecalis were susceptible to tigecycline, linezolid, and teicoplanin. Only one of E. faecalis had intermediate resistance to vancomycin. High susceptibility to ampicillin in E. faecalis remained unchanged (97.7 and 97.6 %, respectively). In the second period of the study the rise of susceptible E. faecalis decreased significantly to penicillin (from 97.7 % to 76.2 %), to levofloxacin (from 59.1 % to 31 %), to HLSR (from 52.3 % до 31 %), and to HLGR (from 47.7 % to 26.2 %), remained unchanged to chloramphenicol (52.3 % and 50 %) and was minimal to erythromycin and tetracycline.Conclusion. The study demonstrated higher rates of antibiotic resistance among E. faecium, which consisted of an increase in VREF and the appearance of linezolid-resistant strains. High susceptibility to ampicillin remained in E. faecalis, but there was an increase in resistance to penicillin and aminoglycosides.


2020 ◽  
Vol 8 (12) ◽  
pp. 2021
Author(s):  
Simona Fioriti ◽  
Gianluca Morroni ◽  
Sonia Nina Coccitto ◽  
Andrea Brenciani ◽  
Alberto Antonelli ◽  
...  

One hundred forty-five florfenicol-resistant enterococci, isolated from swine fecal samples collected from 76 pig farms, were investigated for the presence of optrA, cfr, and poxtA genes by PCR. Thirty florfenicol-resistant Enterococcus isolates had at least one linezolid resistance gene. optrA was found to be the most widespread linezolid resistance gene (23/30), while cfr and poxtA were detected in 6/30 and 7/30 enterococcal isolates, respectively. WGS analysis also showed the presence of the cfr(D) gene in Enterococcus faecalis (n = 2 isolates) and in Enterococcus avium (n = 1 isolate). The linezolid resistance genes hybridized both on chromosome and plasmids ranging from ~25 to ~240 kb. Twelve isolates were able to transfer linezolid resistance genes to enterococci recipient. WGS analysis displayed a great variability of optrA genetic contexts identical or related to transposons (Tn6628 and Tn6674), plasmids (pE035 and pWo27-9), and chromosomal regions. cfr environments showed identities with Tn6644-like transposon and a region from p12-2300 plasmid; cfr(D) genetic contexts were related to the corresponding region of the plasmid 4 of Enterococcus faecium E8014; poxtA was always found on Tn6657. Circular forms were obtained only for optrA- and poxtA-carrying genetic contexts. Clonality analysis revealed the presence of E. faecalis (ST16, ST27, ST476, and ST585) and E. faecium (ST21) clones previously isolated from humans. These results demonstrate a dissemination of linezolid resistance genes in enterococci of swine origin in Central Italy and confirm the spread of linezolid resistance in animal settings.


2020 ◽  
Vol 8 (11) ◽  
pp. 1839
Author(s):  
Seok-Hyeon Na ◽  
Dong-Chan Moon ◽  
Mi-Hyun Kim ◽  
Hee-Young Kang ◽  
Su-Jeong Kim ◽  
...  

We aimed to investigate the presence of the phenicol–oxazolidinone resistance gene poxtA in linezolid-resistant enterococci from food-producing animals and analyze its molecular characteristics. We collected 3941 Enterococcus faecium and 5088 E. faecalis isolates from all provinces of South Korea from 2008 to 2018. We found linezolid resistance in 0.79% (94/3941) of E. faecium and 1.22% (62/5088) of E. faecalis isolates. Overall, 23.1% (36/156) of the linezolid-resistant isolates had the poxtA gene, including 31 E. faecium and five E. faecalis isolates. The poxtA-positive enterococci were mainly isolated from chicken (86.1%; 26/36). Fifteen poxtA-harboring isolates co-carried another linezolid-resistance gene, optrA. Eight E. faecium isolates had an N130K mutation in the ribosomal protein L4, while no mutations were observed in E. faecalis isolates. The poxtA gene was transferred into 10 enterococci by conjugation. Multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) analysis indicated that poxtA-carrying isolates were heterogeneous. Three E. faecium isolates belonged to CC17 (ST32, ST121, and ST491). To our knowledge, this is the first report on the poxtA gene in Korea. Prudent use of antimicrobials and active surveillance on antimicrobial resistance are urgently needed to reduce the risk of dissemination of the linezolid-resistant isolates in humans and animals.


Author(s):  
Aleksandra Trościańczyk ◽  
Aneta Nowakiewicz ◽  
Sebastian Gnat ◽  
Dominik Łagowski ◽  
Marcelina Osińska ◽  
...  

Introduction. The possible transfer of antimicrobial resistance genes between Enterococcus faecium isolates from humans and different animal species, including those not covered by monitoring programs (e.g. pet and wildlife), poses a serious threat to public health. Hypothesis/Gap Statement. Little is known about occurrence and mechanisms of phenomenon of multidrug resistance of E. faecium isolated from various host species in Poland. Aim. The aim of the study was to characterize multidrug-resistant E. faecium isolated from humans and animals (livestock, pets and wildlife) in terms of the occurrence of genetic markers determining resistance. Methodology. Bacterial isolates were tested for phenotypic resistance and the presence of genes encoding resistance to macrolides, tetracycline, aminoglycosides, aminocyclitols and phenicols as well as efflux pump (emeA), resolvase (tndX) and integrase (Int-Tn) genes. The quinolone resistance-determining regions of gyrA and parC were sequenced. Results. Human isolates of E. faecium were characterized by high-level resistance to: ciprofloxacin, enrofloxacin, erythromycin (100 %), as well, as aminoglycosides resistance (kanamycin – 100%, streptomycin – 78 %, gentamicin – 78%). Regardless of the animal species, high level of resistance of E. faecium to tetracycline (from 88–100 %), erythromycin (from 82–94 %) and kanamycin (from 36–100 %) was observed. All E. faecium isolates from wildlife were resistant to fluoroquinolones. However, full susceptibility to vancomycin was observed in all isolates tested. Phenotypic antimicrobial resistance of E. faecium was identified in the presence of the following resistance genes: erm(B) (70%), msr(A) (50 %), tet(L) (35 %), tet(K) (34 %), tet(M) (76 %), aac(6’)-Ie-aph(2″)-Ia (25%), ant(6)-Ia (31%), aph(3)-IIIa (68 %), (tndX) (23 %), and integrase gene (Int-Tn) (34 %). A correlation between an amino acid substitution at positions 83 and 87 of gyrA and position 80 of parC and the high-level fluoroquinolone resistance in E. faecium has been observed as well. Conclusion. The level and range of antimicrobial resistance and the panel of resistance determinants is comparable between E. faecium isolates, despite host species.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0121189 ◽  
Author(s):  
Arata Hidano ◽  
Takehisa Yamamoto ◽  
Yoko Hayama ◽  
Norihiko Muroga ◽  
Sota Kobayashi ◽  
...  

2010 ◽  
Vol 75 (3) ◽  
pp. 225-227 ◽  
Author(s):  
E. Protonotariou ◽  
E. Dimitroulia ◽  
S. Pournaras ◽  
V. Pitiriga ◽  
D. Sofianou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document