A Brucella melitensis high temperature requirement A (htrA) deletion mutant demonstrates a stress response defective phenotype in vitro and transient attenuation in the BALB/c mouse model

1995 ◽  
Vol 19 (5) ◽  
pp. 277-284 ◽  
Author(s):  
Robert W. Phillips ◽  
Philip H. Elzer ◽  
R. Martin Roop
1997 ◽  
Vol 63 (2) ◽  
pp. 165-167 ◽  
Author(s):  
R.W Phillips ◽  
P.H Elzer ◽  
G.T Robertson ◽  
S.D Hagius ◽  
J.V Walker ◽  
...  

1996 ◽  
Vol 60 (1) ◽  
pp. 48-50 ◽  
Author(s):  
P.H Elzer ◽  
S.D Hagius ◽  
G.T Robertson ◽  
R.W Phillips ◽  
J.V Walker ◽  
...  

2016 ◽  
Vol 198 (8) ◽  
pp. 1281-1293 ◽  
Author(s):  
Julien Herrou ◽  
Daniel M. Czyż ◽  
Jonathan W. Willett ◽  
Hye-Sook Kim ◽  
Gekleng Chhor ◽  
...  

ABSTRACTThe general stress response (GSR) system of the intracellular pathogenBrucella abortuscontrols the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required forB. abortussurvival under nonoptimal growth conditionsin vitroand for maintenance of chronic infection in anin vivomouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined.bab1_1070is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditionsin vitro. We have solved crystal structures of Bab1_1070 and demonstrate that it forms a homotetrameric complex that resembles those of WrbA-type NADH:quinone oxidoreductases, which are members of the flavodoxin protein family. However,B. abortusWrbA-relatedprotein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH:quinone oxidoreductasein vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion ofwrpA(ΔwrpA) does not compromise cell survival under acute oxidative stressin vitroor attenuate infection in cell-based or mouse models. However, a ΔwrpAstrain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulatesB. abortusinteraction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose thatB. abortusWrpA represents a functionally distinct member of the diverse flavodoxin family.IMPORTANCEBrucella abortusis an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system ofB. abortuscontrols the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We presentin vitroandin vivofunctional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH:quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activityin vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins.


2019 ◽  
Vol 20 (11) ◽  
pp. 2761 ◽  
Author(s):  
Toshiyuki Nakagawa ◽  
Kazunori Ohta

The initiation of protein synthesis is suppressed under several stress conditions, inducing phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2α), thereby inactivating the GTP-GDP recycling protein eIF2B. By contrast, the mammalian activating transcription factor 4 (ATF4, also known as cAMP response element binding protein 2 (CREB2)) is still translated under stress conditions. Four protein kinases (general control nonderepressible-2 (GCN2) kinase, double-stranded RNA-activated protein kinase (PKR), PKR-endoplasmic reticulum (ER)-related kinase (PERK), and heme-regulated inhibitor kinase (HRI)) phosphorylate eIF2α in the presence of stressors such as amino acid starvation, viral infection, ER stress, and heme deficiency. This signaling reaction is known as the integrated stress response (ISR). Here, we review ISR signaling in the brain in a mouse model of Alzheimer’s disease (AD). We propose that targeting ISR signaling with quercetin has therapeutic potential, because it suppresses amyloid-β (Aβ) production in vitro and prevents cognitive impairments in a mouse model of AD.


2019 ◽  
Author(s):  
Kamal Bagale ◽  
Santosh Paudel ◽  
Hayden Cagle ◽  
Erin Sigel ◽  
Ritwij Kulkarni

AbstractThe effects of e-cigarette vapor (EV) exposure on the physiology of respiratory microflora are not fully defined. We analyzed the effects of exposure to vapor from nicotine-containing and nicotine-free e-liquid formulations on virulence and transcriptome of Streptococcus pneumoniae strain TIGR4, a pathogen that asymptomatically colonizes human nasopharyngeal mucosa. TIGR4 was pre-exposed for 2h to nicotine-containing EV extract (EVE+NIC), nicotine-free EV extract (EVE−NIC), cigarette smoke extract (CSE), or nutrient-rich TS broth (control). The differences in the treatment and control TIGR4 were explored using transcriptome sequencing, in vitro virulence assays, and in vivo mouse model of acute pneumonia. The analysis of RNASeq profiles revealed modest changes in the expression of 14 genes involved in sugar transport and metabolism in EVE−NIC pre-exposed TIGR4 compared to the control. While, EVE+NIC or CSE exposure altered expression of 264 and 982 genes, respectively, most of which were involved in metabolism and stress response. Infection in a mouse model of acute pneumonia with control TIGR4 or with TIGR4 pre-exposed to EVE+NIC, EVE−NIC, or CSE did not show significant differences in disease parameters, such as bacterial organ burden and respiratory cytokine response. Interestingly, TIGR4 exposed to CSE or EVE+NIC (but not EVE−NIC) exhibited moderate induction of biofilm formation. However, none of the treatment groups showed significant alterations in pneumococcal hydrophobicity or epithelial cell adherence. In summary, our study reports that exposure to EV significantly alters the S. pneumoniae transcriptome in a nicotine-dependent manner without affecting pneumococcal virulence.ImportanceWith the increasing popularity of e-cigarettes amongst cigarette smoking and non-smoking adults and children, and the recent reports of vaping related lung illnesses and deaths, further analysis of the adverse health effects of e-cigarette vapor (EV) exposure is warranted. Since pathogenic bacteria such as Streptococcus pneumoniae can colonize the human nasopharynx as commensals, they may be affected by the exposure to bioactive chemicals in EV. Hence in this study we examined the effects of EV exposure on the physiology of S. pneumoniae strain TIGR4. In order to differentiate between the effects of nicotine and non-nicotine components, we specifically compared RNASeq profiles and virulence of TIGR4 exposed to vapor from nicotine-containing and nicotine-free e-liquid formulations. We observed that nicotine-containing EV augmented TIGR4 biofilms and altered expression of TIGR4 genes predominantly involved in metabolism and stress response. However, neither nicotine-containing nor nicotine-free EV affected TIGR4 virulence in a mouse model.


2001 ◽  
Vol 69 (9) ◽  
pp. 5911-5913 ◽  
Author(s):  
Robert W. Phillips ◽  
R. Martin Roop

ABSTRACT A second mutation has recently been identified in the previously described Brucella abortus htrA mutant PHE1. As a result of this finding, a new B. abortus htrAmutant, designated RWP11, was constructed to evaluate the biological function of the Brucella HtrA protease. RWP11 is more sensitive to oxidative killing in vitro and less resistant to killing by cultured murine neutrophils and macrophages than the virulent parental strain 2308 but is not attenuated in BALB/c mice through 4 weeks postinfection. The in vitro phenotype of B. abortusRWP11 is consistent with the proposed function of bacterial HtrA proteases as components of a secondary line of defense against oxidative damage. The in vivo phenotype of this mutant, however, indicates that, unlike the corresponding Salmonellaand Yersinia proteins, Brucella HtrA does not play a critical role in virulence in the mouse model.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1129-1129
Author(s):  
Ying Liu ◽  
Merav Socolovsky

Abstract The rate of red blood cell production increases up to ten-fold during stress erythropoiesis. We have recently identified stress-responsive CD71highTer119positive early erythroblast subsets in freshly-isolated mouse hematopoietic tissue by flow cytometry. Both the absolute number and relative frequency of these early erythroblast subsets increase dramatically during stress. We have shown that this erythroblast expansion is associated with enhanced erythroblast viability, which is at least in part due to down-regulation of the death-receptor Fas, and its ligand, FasL from early erythroblasts by erythropoietin-receptor (EpoR) signaling (Liu et al., Blood 2006). The anti-apoptotic protein bcl-xL is induced in differentiating erythroid cells in vitro by EpoR and Stat5 signaling (Socolovsky et al., Cell 1999). Bcl-xL is essential for erythroid cell viability and is required for the maintenance of the normal basal hematocrit (Motoyama et al., Science 1995). However, it is unclear whether bcl-xL plays a role in enhancing erythroblast viability during the stress response. Serum factors other than Epo may modulate erythroid bcl-xL levels (Dolznig et al., Oncogene 2006), complicating the interpretation of bcl-xL measurements in cultured erythroid cells in vitro. Therefore, we examined the potential role of bcl-xL in stress erythropoiesis by measuring bcl-xL mRNA directly in CD71highTer119positive early erythroblasts in vivo in a mouse model of stress. We mimicked the effect of acute erythropoietic stress by injecting adult Balb/C mice with a single dose of Epo (50 mg/kg subcutaneously). Control mice were injected with an equal volume of saline. Spleen cells were harvested at 3, 16, 24, 48 and 72 hours post injection, and CD71highTer119positive early erythroblasts were immediately sorted by flow-cytometry. RNA was extracted from these freshly sorted cells and used in quantitative real-time PCR to measure bcl-xL mRNA expression. We normalized the level of bcl-xL mRNA in each sample by expressing it relative to beta-actin mRNA. At least 3 independent experiments were conducted for each time point. In parallel, we measured serum Epo concentration following Epo injection by ELISA. This showed that Epo increased approximately 100 fold by 40 minutes post-injection, reaching a peak by 6 hours and returning to basline levels by 48 hours. We found that bcl-xL mRNA began to increase in spleen early erythroblasts by 3 hours following Epo injection. By 16 hours, bcl-xL mRNA in Epo-injected mice was three-fold higher than in mice injected with saline. Bcl-xL mRNA continued to be elevated, by 2.5 fold, at 24 hours, but declined back to baseline levels by 48 hours. The time course of the increase in splenic early erythroblast bcl-xL mRNA therefore closely parallels the time course of serum Epo. The induction of early erythroblat bcl-xL mRNA suggests it is likely to contribute to the viability of stress-responsive CD71highTer119positive early erythroblasts, and therefore to the increased erythropoietic rate during the stress response.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Sign in / Sign up

Export Citation Format

Share Document