scholarly journals The independent and combined effects of weight loss and aerobic exercise on blood pressure and oral glucose tolerance in older men☆

1998 ◽  
Vol 11 (12) ◽  
pp. 1405-1412 ◽  
Author(s):  
D DENGEL ◽  
A GALECKI ◽  
J HAGBERG ◽  
R PRATLEY
1996 ◽  
Vol 81 (1) ◽  
pp. 318-325 ◽  
Author(s):  
D. R. Dengel ◽  
R. E. Pratley ◽  
J. M. Hagberg ◽  
E. M. Rogus ◽  
A. P. Goldberg

The decline in glucose homeostasis with aging may be due to the physical deconditioning and obesity that often develop with aging. The independent and combined effects of aerobic exercise training (AEX) and weight loss (WL) on glucose metabolism were studied in 47 nondiabetic sedentary older men. There were 14 men in a weekly behavioral modification/WL program, 10 in a 3 times/wk AEX program, 14 in an AEX+WL program, and 9 in the control (Con) group. The 10-mo intervention increased maximal oxygen consumption (VO2max) in both the AEX and AEX+WL groups [0.33 +/- 0.05 and 0.37 +/- 0.09 (SE) l/min, respectively], but VO2max did not significantly change in the WL (0.01 +/- 0.06 l/min) and Con groups (-0.04 +/- 0.05 l/min; P > 0.05). The AEX+WL and WL groups had comparable reductions in body weight (-8.5 +/- 0.9 and -8.8 +/- 1.2 kg, respectively) and percent fat (-5.5 +/- 0.7 and -5.9 +/- 1.1%, respectively) that were significantly greater than those in the Con and AEX groups. Oral glucose tolerance tests showed significant reductions in insulin responses in the AEX, WL, and AEX+WL groups, but the decrease in insulin response in the AEX+WL group was significantly greater than that in the other three groups. The glucose area decreased significantly in the WL and AEX+WL groups but did not change in the Con or AEX groups. There were significant increases in insulin-mediated glucose disposal rates as measured by the hyperinsulinemic (600 pmol.m-2.min-1) euglycemic clamps in the AEX and AEX+WL groups [1.66 +/- 0.50 and 1.76 +/- 0.41 mg.kg fat-free mass (FFM)-1.min-1, respectively] that were significantly greater than those in the WL (0.13 +/- 0.31 mg.kg FFM-1.min-1) and Con groups (-0.05 +/- 0.51 mg.kg FFM-1.min-1; n = 5). These data suggest that AEX and WL improve glucose metabolism through different mechanisms and that the combined intervention of AEX+WL is necessary to improve both glucose tolerance and insulin sensitivity in older men.


Author(s):  
Mohammed K. Hankir ◽  
Laura Rotzinger ◽  
Arno Nordbeck ◽  
Caroline Corteville ◽  
Annett Hoffmann ◽  
...  

Leptin is the archetypal adipokine that promotes a negative whole-body energy balance largely through its action on brain leptin receptors. As such, the sustained weight loss and food intake suppression induced by Roux-en-Y gastric bypass (RYGB) surgery have been attributed to enhancement of endogenous leptin action. We formally revisited this idea in Zucker Fatty fa/fa rats, an established genetic model of leptin receptor deficiency, and carefully compared their body weight, food intake and oral glucose tolerance after RYGB with that of sham-operated fa/fa (obese) and sham-operated fa/+ (lean) rats. We found that RYGB rats sustainably lost body weight, which converged with that of lean rats and was 25.5 % lower than that of obese rats by the end of the 4 week study period. Correspondingly, daily food intake of RYGB rats was similar to that of lean rats from the second postoperative week, while it was always at least 33.9 % lower than that of obese rats. Further, oral glucose tolerance of RYGB rats was normalized at the forth postoperative week. These findings assert that leptin is not an essential mediator of the sustained weight loss and food intake suppression as well as the improved glycemic control induced by RYGB, and instead point to additional circulating and/or neural factors.


2004 ◽  
Vol 287 (5) ◽  
pp. E948-E954 ◽  
Author(s):  
Chi-Chang Juan ◽  
Yi-Wen Shen ◽  
Yueh Chien ◽  
Yen-Jie Lin ◽  
Shau-Feng Chang ◽  
...  

We previously showed that chronic insulin infusion induces insulin resistance, hyperendothelinemia, and hypertension in rats (C. C. Juan, V. S. Fang, C. F. Kwok, J. C. Perng, Y. C. Chou, and L. T. Ho. Metabolism 48: 465–471, 1999). Endothelin-1 (ET-1), a potent vasoconstrictor, is suggested to play an important role in maintaining vascular tone and regulating blood pressure, and insulin increases ET-1 production in vivo and in vitro. In the present study, BQ-610, a selective endothelin A receptor antagonist, was used to examine the role of ET-1 in insulin-induced hypertension in rats. BQ-610 (0.7 mg/ml; 0.5 ml/kg body wt) or normal saline was given intraperitoneally two times daily for 25 days to groups of rats infused with either saline or insulin (2 U/day via sc-implanted osmotic pumps), and changes in plasma levels of insulin, glucose, and ET-1 and the systolic blood pressure were measured over the experimental period, whereas changes in insulin sensitivity were examined at the end of the experimental period. Plasma insulin and ET-1 levels were measured by RIA, plasma glucose levels using a glucose analyzer, systolic blood pressure by the tail-cuff method, and insulin sensitivity by an oral glucose tolerance test. Our studies showed that insulin infusion caused sustained hyperinsulinemia in both saline- and BQ-610-injected rats over the infusion period. After pump implantation (2 wk), the systolic blood pressure was significantly higher in insulin-infused rats than in saline-infused rats in the saline-injected group (133 ± 3.1 vs. 113 ± 1.1 mmHg, P < 0.05) but not in the BQ-610-injected group (117 ± 1.2 vs. 117 ± 1.8 mmHg). Plasma ET-1 levels in both sets of insulin-infused rats were higher than in saline-infused controls (2.5 ± 0.6 and 2.5 ± 0.8 vs. 1.8 ± 0.4 and 1.7 ± 0.3 pmol/l, P < 0.05). Oral glucose tolerance tests showed that BQ-610 treatment did not prevent the insulin resistance caused by chronic insulin infusion. No significant changes were found in insulin sensitivity and blood pressure in saline-infused rats treated with BQ-610. In a separate experiment, insulin infusion induced the increase in arterial ET-1 content, hypertension, and subsequent plasma ET-1 elevation in rats. These results suggest that, in the insulin infusion rat model, ET-1 plays a mediating role in the development of hypertension, but not of insulin resistance.


2008 ◽  
Vol 86 (3) ◽  
pp. 71-77 ◽  
Author(s):  
Kenneth M. Madden ◽  
Gale Tedder ◽  
Chris Lockhart ◽  
Graydon S. Meneilly

Although postprandial decreases in blood pressure are a common cause of syncope in the older adult population, the postprandial effects of the oral glucose tolerance test on blood pressure and the arterial baroreflex remain poorly characterized in older adults. Therefore, arterial blood pressure and the arterial baroreflex were studied in 19 healthy older adults (mean age 71.7 ± 1.1 years) who were given a standardized oral glucose load (75 g) or an isovolumetric sham drink during 2 separate sessions. All measures were taken for 120 min after treatment. Baroreflex function was assessed by using the spontaneous baroreflex method (baroreflex sensitivity, BRS). Subjects demonstrated a decrease in BRS after oral glucose that was not seen in the placebo session (two-way analysis of variance, p = 0.04). There was no significant change in systolic, mean, or diastolic blood pressure; together with a drop in BRS, this resulted in a significant tachycardia post glucose (two-way analysis of variance, p < 0.001). We conclude that healthy older adults can successfully maintain blood pressure during an oral glucose tolerance test despite a decrease in arterial BRS. Decreased BRS resulted in a tachycardic response to glucose.


Sign in / Sign up

Export Citation Format

Share Document