scholarly journals Strain-rate dependent mechanism of cooperative dislocation generation: application to the brittle–ductile transition

2001 ◽  
Vol 319-321 ◽  
pp. 484-489 ◽  
Author(s):  
M. Khantha ◽  
V. Vitek ◽  
D.P. Pope
2000 ◽  
Vol 646 ◽  
Author(s):  
M. Khantha ◽  
V. Vitek ◽  
D. P. Pope

ABSTRACTThe brittle-to-ductile transition (BDT) and the strain-rate dependence of the brittle-to-ductile transition temperature (BDTT) have been recently investigated in single crystals of TiAl [1]. It was found that the activation energy associated with the BDTT is 1.4 eV when the slip is dominated by ordinary dislocations and 4.9 eV when it is dominated by superdislocations. Despite this difference in the activation energies, the BDTT, while varying with the strain-rate, remains in the same temperature range, viz., between 516–750C and 635–685C for ordinary and superdislocations, respectively. In this paper, we examine how the activation energy of the BDTT can vary with the type of dislocation activity and explain why it can attain values which are clearly much larger than the activation energy for dislocation motion. We describe a strain-rate dependent mechanism of cooperative dislocation generation in loaded solids above a critical temperature and use it to explain the characteristics of the BDT in TiAl. We show that the activation energy associated with the BDTT is a composite value determined by two or more inter-dependent thermally activated processes and its magnitude can be much larger than the activation energy for dislocation motion in certain materials. The predictions of the model are in good agreement with observations in TiAl.


2010 ◽  
Vol 44-47 ◽  
pp. 2336-2340
Author(s):  
Xi Cheng Huang ◽  
Wen Jun Hu ◽  
Yi Xia Yan ◽  
Ruo Ze Xie ◽  
Fang Ju Zhang ◽  
...  

In this work the static and dynamic properties of vanadium alloy V-5Cr-5Ti over a wide range of temperature from 20 to 1000 degree at strain rates ranged from 10-4/s~103/s were studied experimentally under uniaxial quasi-static tension with MTS universal testing machine, uniaxial dynamic compression and tension with split Hopkinson bar system with temperature control. The stress-strain curves of V-5Cr-5Ti at various temperatures and various strain rates were obtained. Experimental data show that V-5Cr-5Ti behaves strain-rate sensitive and temperature dependent, for instance the material parameters yield stress, tensile strength and failure strain. And fracture mode of the material is also dependent on strain-rate and temperature. Based on experimental data the temperature-rate-dependent constitutive relations were established in the form of Johnson-Cook and Cowper-Symonds models which are widely used in numerical simulation of dynamic processes of structures under impact loading. The material microstructures and failure modes were analyzed using optical microscope, TEM etc, and results shows that the yield stress and strength are increased with strain rate. The brittle-ductile transition strain-rate is from 101/s to102/s.


2020 ◽  
Vol 62 (6) ◽  
pp. 573-583
Author(s):  
Andreas Lutz ◽  
Lukas Huber ◽  
Claus Emmelmann

2019 ◽  
Author(s):  
Minai Zhang ◽  
Xin Wang ◽  
Alexander D. Dupuy ◽  
Julie M. Schoenung ◽  
Xiaoqiang Li

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2019 ◽  
Vol 287 ◽  
pp. 3-7
Author(s):  
Yong Zhang ◽  
Qing Zhang ◽  
Yuan Tao Sun ◽  
Xian Rong Qin

The constitutive modeling of aluminum alloy under warm forming conditions generally considers the influence of temperature and strain rate. It has been shown by published flow stress curves of Al-Mg alloy that there is nearly no effect of strain rate on initial yield stress at various temperatures. However, most constitutive models ignored this phenomenon and may lead to inaccurate description. In order to capture the rate-independent initial yield stress, Peric model is modified via introducing plastic strain to multiply the strain rate, for eliminating the effect of strain rate when the plastic strain is zero. Other constitutive models including the Wagoner, modified Hockett–Sherby and Peric are also considered and compared. The results show that the modified Peric model could not only describe the temperature-and rate-dependent flow stress, but also capture the rate-independent initial yield stress, while the Wagoner, modified Hockett–Sherby and Peric model can only describe the temperature-and rate-dependent flow stress. Moreover, the modified Peric model could obtain proper static yield stress more naturally, and this property may have potential applications in rate-dependent simulations.


Sign in / Sign up

Export Citation Format

Share Document