Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability

2002 ◽  
Vol 338 (1-2) ◽  
pp. 282-298 ◽  
Author(s):  
K.P. Rao ◽  
J.B. Zhou
2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Alexander I. Malkin ◽  
Vladimir V. Chernyshev ◽  
Alena A. Ryazantseva ◽  
Alexander L. Vasiliev ◽  
Maximilian S. Nickolsky ◽  
...  

Vacuum heat treatment of mechanically alloyed powders of boron and aluminium leads to the formation of a metastable Al-rich phase, which can be quenched. Its structure, composition and thermal stability are established. With the chemical formula Al1.28B the rhombohedral phase is unusually rich in Al. The parameters of the unit cell determined from X-ray powder diffraction are a = 18.3464 (19), c = 8.9241 (9) Å, V = 2601.3 (6) Å3, space group R 3. It is stable on heating to 630°C. It is suggested that this phase is an important intermediate step in the formation of AlB2 and, eventually, of other borides; its nucleation and thermal stability are explained by high elastic energy hindering the formation of equilibrium phases at low temperatures.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Olha Mazur ◽  
Marta Michalska-Sionkowska ◽  
Krzysztof Łukowicz ◽  
Anna Maria Osyczka

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.


e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


2021 ◽  
Author(s):  
Qifeng Jiang ◽  
Sydnee Wong ◽  
Rebekka S Klausen

Thermal characterization of polysilanes has focused on the influence of organic side chains, whereas little is understood about the influence of silane backbone microstructure on thermal stability, phase properties, and...


2019 ◽  
Vol 29 (1) ◽  
pp. 32157
Author(s):  
Luciane Madureira Almeida ◽  
Elisa Flávia Luiz Cardoso Bailão ◽  
Illana Reis Pereira ◽  
Fabrício Alves Ferreira ◽  
Patrícia Lima D'Abadia ◽  
...  

AIMS: To perform a physicochemical and phytochemical characterization of Jatropha curcas latex and to investigate its antiangiogenic potential. METHODS: We performed an initial physicochemical characterization of J. curcas latex using thermal gravimetric analyses and Fourier Transform Infrared spectroscopy. After that, phenols, tannins and flavonoids were quantified. Finally, the potential of J. curcas latex to inhibit angiogenesis was evaluated using the chick chorioallantoic membrane model. Five groups of 20 fertilized chicken eggs each had the chorioallantoic membrane exposed to the following solutions: (1) water, negative control; (2) dexamethasone, angiogenesis inhibitor; (3) Regederm®, positive control; (4) 25% J. curcas latex diluted in water; (5) 50% J. curcas latex diluted in water; and (6) J. curcas crude latex. Analysis of the newly-formed vascular net was made through captured images and quantification of the number of pixels. Histological analyses were performed to evaluate the inflammation, neovascularization, and hyperemia parameters. The results were statically analyzed with a significance level set at p ˂0.05.RESULTS: Physicochemical characterization showed that J. curcas latex presented a low amount of cis-1.4-polyisoprene, which reduced its elasticity and thermal stability. Phytochemical analyses of J. curcas latex identified a substantial amount of phenols, tannins, and flavonoids (51.9%, 11.8%, and 0.07% respectively). Using a chick chorioallantoic membrane assay, we demonstrated the antiangiogenic potential of J. curcas latex. The latex induced a decrease in the vascularization of the membranes when compared with neutral and positive controls (water and Regederm®). However, when compared with the negative control (dexamethasone), higher J. curcas latex concentrations showed no significant differences.CONCLUSIONS: J. curcas latex showed low thermal stability, and consisted of phenols, tannins, and flavonoids, but little or no rubber. Moreover, this latex demonstrated a significant antiangiogenic activity on a chick chorioallantoic membrane model. The combination of antimutagenic, cytotoxic, antioxidant and antiangiogenic properties makes J. curcas latex a potential target for the development of new drugs.


Sign in / Sign up

Export Citation Format

Share Document