Activity against Mycobacterium tuberculosis with concomitant induction of cellular immune responses by a tetraaza-macrocycle with acetate pendant arms

2001 ◽  
Vol 152 (6) ◽  
pp. 569-576 ◽  
Author(s):  
Suzana David ◽  
Diane Ordway ◽  
Maria-Jorge Arroz ◽  
Judite Costa ◽  
Rita Delgado
PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22718 ◽  
Author(s):  
Suraj B. Sable ◽  
Mani Cheruvu ◽  
Subhadra Nandakumar ◽  
Sunita Sharma ◽  
Kakali Bandyopadhyay ◽  
...  

2003 ◽  
Vol 71 (6) ◽  
pp. 3146-3154 ◽  
Author(s):  
Avi-Hai Hovav ◽  
Jacob Mullerad ◽  
Liuba Davidovitch ◽  
Yolanta Fishman ◽  
Fabiana Bigi ◽  
...  

ABSTRACT Th1 immune response is essential in the protection against mycobacterial intracellular pathogens. Lipoproteins trigger both humoral and cellular immune responses and may be candidate protective antigens. We studied in BALB/c mice the immunogenicity and the protection offered by the recombinant 27-kDa Mycobacterium tuberculosis lipoprotein and the corresponding DNA vaccine. Immunization with the 27-kDa antigen resulted in high titers of immunoglobulin G1 (IgG1) and IgG2a with a typical Th1 profile and a strong delayed hypersensitivity response. A strong proliferation response was observed in splenocytes, and significant nitric oxide production and gamma interferon secretion but not interleukin 10 secretion were measured. Based on these criteria, the 27-kDa antigen induced a typical Th1-type immune response thought to be necessary for protection. Surprisingly, in 27-kDa-vaccinated mice (protein or DNA vaccines) challenged by M. tuberculosis H37Rv or BCG strains, there was a significant increase in the numbers of CFU in the spleen compared to that for control groups. Furthermore, the protection provided by BCG or other mycobacterial antigens was completely abolished once the 27-kDa antigen was added to the vaccine preparations. This study indicates that the 27-kDa antigen has an adverse effect on the protection afforded by recognized vaccines. We are currently studying how the 27-kDa antigen modulates the mouse immune response.


1999 ◽  
Vol 67 (11) ◽  
pp. 5567-5572 ◽  
Author(s):  
Félix Romain ◽  
Cynthia Horn ◽  
Pascale Pescher ◽  
Abdelkader Namane ◽  
Michel Riviere ◽  
...  

ABSTRACT A protection against a challenge with Mycobacterium tuberculosis is induced by previous immunization with living attenuated mycobacteria, usually bacillus Calmette-Guérin (BCG). The 45/47-kDa antigen complex (Apa) present in culture filtrates of BCG of M. tuberculosis has been identified and isolated based on its ability to interact mainly with T lymphocytes and/or antibodies induced by immunization with living bacteria. The protein is glycosylated. A large batch of Apa was purified from M. tuberculosis culture filtrate to determine the extent of glycosylation and its role on the expression of the immune responses. Mass spectrometry revealed a spectrum of glycosylated molecules, with the majority of species bearing six, seven, or eight mannose residues (22, 24, and 17%, respectively), while others three, four, or five mannoses (5, 9, and 14%, respectively). Molecules with one, two, or nine mannoses were rare (1.5, 3, and 3%, respectively), as were unglycosylated species (in the range of 1%). To eliminate the mannose residues linked to the protein, the glycosylated Apa molecules were chemically or enzymatically treated. The deglycosylated antigen was 10-fold less active than native molecules in eliciting delayed-type hypersensitivity reactions in guinea pigs immunized with BCG. It was 30-fold less active than native molecules when assayed in vitro for its capacity to stimulate T lymphocytes primed in vivo. The presence of the mannose residues on the Apa protein was essential for the antigenicity of the molecules in T-cell-dependent immune responses in vitro and in vivo.


1995 ◽  
Vol 63 (3) ◽  
pp. 804-810 ◽  
Author(s):  
K Hasløv ◽  
A Andersen ◽  
S Nagai ◽  
A Gottschau ◽  
T Sørensen ◽  
...  

2008 ◽  
Vol 76 (9) ◽  
pp. 4190-4198 ◽  
Author(s):  
R. Al-Attiyah ◽  
A. S. Mustafa

ABSTRACT Comparative genomics has identified several regions of differences (RDs) between the infectious Mycobacterium tuberculosis and the vaccine strains of Mycobacterium bovis BCG. We aimed to evaluate the cellular immune responses induced by antigens encoded by genes predicted in 11 RDs. Synthetic peptides covering the sequences of RD1, RD4 to RD7, RD9 to RD13, and RD15 were tested for antigen-induced proliferation and secretion of Th1 cytokine, gamma interferon (IFN-γ), by peripheral blood mononuclear cells (PBMC) obtained from culture-proven pulmonary tuberculosis (TB) patients and M. bovis BCG-vaccinated healthy subjects. Among the peptide pools, RD1 induced the best responses in both donor groups and in both assays. In addition, testing of TB patients' PBMC for secretion of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin 6 [IL-6], IL-8, and IL-1β), Th1 cytokines (IFN-γ, IL-2, and TNF-β), and Th2 cytokines (IL-4, IL-5, and IL-10) showed differential effects of RD peptides in the secretion of IFN-γ and IL-10, with high IFN-γ/IL-10 ratios (32 to 5.0) in response to RD1, RD5, RD7, RD9, and RD10 and low IFN-γ/IL-10 ratios (<1.0) in response to RD12, RD13, and RD15. Peptide-mixing experiments with PBMC from healthy subjects showed that secretion of large quantities of IL-10 in response to RD12 and RD13 correlated with inhibition of Th1 responses induced by RD1 peptides. In conclusion, our results suggest that M. tuberculosis RDs can be divided into two major groups—one group that activates PBMC to preferentially secrete IFN-γ and another group that activates preferential secretion of IL-10—and that these two groups of RDs may have roles in protection against and pathogenesis of TB, respectively.


2004 ◽  
Vol 138 (1) ◽  
pp. 139-144 ◽  
Author(s):  
R. AL-ATTIYAH ◽  
A. S. MUSTAFA ◽  
A. T. ABAL ◽  
A. S. M. EL-SHAMY ◽  
W. DALEMANS ◽  
...  

2008 ◽  
Vol 16 (1) ◽  
pp. 122-126 ◽  
Author(s):  
JaeHyun Lim ◽  
Steven C. Derrick ◽  
Kristopher Kolibab ◽  
Amy Li Yang ◽  
Steven Porcelli ◽  
...  

ABSTRACT In this study, the early pulmonary cytokine and chemokine responses in mice immunized with either BCG vaccine, a ΔsecA2 mutant of Mycobacterium tuberculosis, or a DNA vaccine expressing an ESAT6-antigen 85B fusion protein and then aerogenically challenged with a low dose of M. tuberculosis were evaluated by PCR array. The cellular immune responses at day 10 postchallenge were essentially equivalent in the lungs of mice immunized with either the highly immunogenic BCG vaccine or the ΔsecA2 M. tuberculosis mutant strain. Specifically, 12 immune biomolecules (including gamma interferon [IFN-γ], interleukin-21 [IL-21], IL-27, IL-17f, CXCL9, CXCL10, and CXCL11) were differentially regulated, relative to the levels for naïve controls, in the lungs of vaccinated mice at this time point. Although the vaccine-related immune responses evoked in mice immunized with the DNA vaccine were relatively limited at 10 days postinfection, upregulation of IFN-γ RNA synthesis as well as increased expression levels of CXCL9, CXCL10, and CXCL11 chemokines were detected.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Raija K Ahmed ◽  
Zoyia Rohava ◽  
Kithiganahalli N Balaji ◽  
Sven E Hoffner ◽  
Hans Gaines ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document