scholarly journals In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis

2004 ◽  
Vol 138 (1) ◽  
pp. 139-144 ◽  
Author(s):  
R. AL-ATTIYAH ◽  
A. S. MUSTAFA ◽  
A. T. ABAL ◽  
A. S. M. EL-SHAMY ◽  
W. DALEMANS ◽  
...  
2003 ◽  
Vol 36 (4) ◽  
pp. 435-440 ◽  
Author(s):  
Valéria Rêgo Alves Pereira ◽  
Virginia Maria Barros de Lorena ◽  
Mineo Nakazawa ◽  
Ana Paula Galvão da Silva ◽  
Ulisses Montarroyos ◽  
...  

Humoral and cellular immune responses were evaluated in 44 C57BL/6 mice immunized with the Trypanosoma cruzi recombinant antigens CRA and FRA. Both antigens induced cutaneous immediate-type hypersensitivity response. The levels of IgG1, IgG2a, IgG2b and IgG3 were high in CRA immunized mice. IgG3 was the predominant isotype. Although no difference in antibody levels was observed in FRA-immunized mice when compared to control mice, both antigens were able to induce lymphoproliferation in immunized mice. Significant differences were observed between incorporation of [³H]- thymidine by spleen cell stimulated in vitro with CRA or FRA and the control group. These results suggest that CRA and FRA could be involved in mechanisms of resistance to Trypanosoma cruzi infection.


1999 ◽  
Vol 67 (11) ◽  
pp. 5567-5572 ◽  
Author(s):  
Félix Romain ◽  
Cynthia Horn ◽  
Pascale Pescher ◽  
Abdelkader Namane ◽  
Michel Riviere ◽  
...  

ABSTRACT A protection against a challenge with Mycobacterium tuberculosis is induced by previous immunization with living attenuated mycobacteria, usually bacillus Calmette-Guérin (BCG). The 45/47-kDa antigen complex (Apa) present in culture filtrates of BCG of M. tuberculosis has been identified and isolated based on its ability to interact mainly with T lymphocytes and/or antibodies induced by immunization with living bacteria. The protein is glycosylated. A large batch of Apa was purified from M. tuberculosis culture filtrate to determine the extent of glycosylation and its role on the expression of the immune responses. Mass spectrometry revealed a spectrum of glycosylated molecules, with the majority of species bearing six, seven, or eight mannose residues (22, 24, and 17%, respectively), while others three, four, or five mannoses (5, 9, and 14%, respectively). Molecules with one, two, or nine mannoses were rare (1.5, 3, and 3%, respectively), as were unglycosylated species (in the range of 1%). To eliminate the mannose residues linked to the protein, the glycosylated Apa molecules were chemically or enzymatically treated. The deglycosylated antigen was 10-fold less active than native molecules in eliciting delayed-type hypersensitivity reactions in guinea pigs immunized with BCG. It was 30-fold less active than native molecules when assayed in vitro for its capacity to stimulate T lymphocytes primed in vivo. The presence of the mannose residues on the Apa protein was essential for the antigenicity of the molecules in T-cell-dependent immune responses in vitro and in vivo.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e93549 ◽  
Author(s):  
Alexandra Dostal ◽  
Mélanie Gagnon ◽  
Christophe Chassard ◽  
Michael Bruce Zimmermann ◽  
Liam O'Mahony ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1408
Author(s):  
Qiao Li ◽  
Zhihua Liu ◽  
Yi Liu ◽  
Chen Liang ◽  
Jiayi Shu ◽  
...  

TFPR1 is a novel adjuvant for protein and peptide antigens, which has been demonstrated in BALB/c mice in our previous studies; however, its adjuvanticity in mice with different genetic backgrounds remains unknown, and its adjuvanticity needs to be improved to fit the requirements for various vaccines. In this study, we first compared the adjuvanticity of TFPR1 in two commonly used inbred mouse strains, BALB/c and C57BL/6 mice, in vitro and in vivo, and demonstrated that TFPR1 activated TLR2 to exert its immune activity in vivo. Next, to prove the feasibility of TFPR1 acting as a major component of combined adjuvants, we prepared a combined adjuvant, TF–Al, by formulating TFPR1 and alum at a certain ratio and compared its adjuvanticity with that of TFPR1 and alum alone using OVA and recombinant HBsAg as model antigens in both BALB/c and C57BL/6 mice. Results showed that TFPR1 acts as an effective vaccine adjuvant in both BALB/c mice and C57BL/6 mice, and further demonstrated the role of TLR2 in the adjuvanticity of TFPR1 in vivo. In addition, we obtained a novel combined adjuvant, TF–Al, based on TFPR1, which can augment antibody and cellular immune responses in mice with different genetic backgrounds, suggesting its promise for vaccine development in the future.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22718 ◽  
Author(s):  
Suraj B. Sable ◽  
Mani Cheruvu ◽  
Subhadra Nandakumar ◽  
Sunita Sharma ◽  
Kakali Bandyopadhyay ◽  
...  

2003 ◽  
Vol 71 (6) ◽  
pp. 3146-3154 ◽  
Author(s):  
Avi-Hai Hovav ◽  
Jacob Mullerad ◽  
Liuba Davidovitch ◽  
Yolanta Fishman ◽  
Fabiana Bigi ◽  
...  

ABSTRACT Th1 immune response is essential in the protection against mycobacterial intracellular pathogens. Lipoproteins trigger both humoral and cellular immune responses and may be candidate protective antigens. We studied in BALB/c mice the immunogenicity and the protection offered by the recombinant 27-kDa Mycobacterium tuberculosis lipoprotein and the corresponding DNA vaccine. Immunization with the 27-kDa antigen resulted in high titers of immunoglobulin G1 (IgG1) and IgG2a with a typical Th1 profile and a strong delayed hypersensitivity response. A strong proliferation response was observed in splenocytes, and significant nitric oxide production and gamma interferon secretion but not interleukin 10 secretion were measured. Based on these criteria, the 27-kDa antigen induced a typical Th1-type immune response thought to be necessary for protection. Surprisingly, in 27-kDa-vaccinated mice (protein or DNA vaccines) challenged by M. tuberculosis H37Rv or BCG strains, there was a significant increase in the numbers of CFU in the spleen compared to that for control groups. Furthermore, the protection provided by BCG or other mycobacterial antigens was completely abolished once the 27-kDa antigen was added to the vaccine preparations. This study indicates that the 27-kDa antigen has an adverse effect on the protection afforded by recognized vaccines. We are currently studying how the 27-kDa antigen modulates the mouse immune response.


1996 ◽  
Vol 42 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Graham Pawelec ◽  
Arnika Rehbein ◽  
Elke Schlotz ◽  
Paul da Silva

Sign in / Sign up

Export Citation Format

Share Document