Carbon to cast iron electrical contact resistance constitutive model for finite element analysis

2003 ◽  
Vol 132 (1-3) ◽  
pp. 119-131 ◽  
Author(s):  
Daniel Richard ◽  
Mario Fafard ◽  
René Lacroix ◽  
Pascal Cléry ◽  
Yves Maltais
2021 ◽  
Vol 2 (2) ◽  
pp. 93-97
Author(s):  
Satriawan Dini Hariyanto ◽  
Wikan Kurniawan

Stress analysis of the bender components in the design of the begel fabricator machine was carried out using FEA (Finite Element Analysis) with three variations of the constituent material parameters, namely 6061 aluminum, mild steel, and cast iron with a modulus of elasticity of 68.9 GPa, 220 GPa, 120.5 GPa, respectively. The test is carried out by a loading parameter 2520 MPa and fixed constraint. The maximum von misses stress and displacement obtained for each material parameter components using aluminum, mild steel, and cast iron are 17.78 MPa; 0.00765, 17.49 MPa; 0.00229, 17.62 MPa; 0.00427 respectively.


Author(s):  
Valentin Mereuta

Abstract: In this work the 3D model of the camshaft was done using Autodesk Inventor version 2021 with the literature data and finite element analysis is performed by applying restrictions and loads conditions, first by the absence of the torque and then by applying the torque. Three materials were analyzed in both situations: Cast Iron, Stainless Steel AISI 202 and Steel Alloy. Following the comparative study for the three materials, it can be specified the importance of the material for the construction of the camshaft. Keywords: Camshaft, Static analysis, Autodesk Inventor


Author(s):  
Weijie Jiang ◽  
Jianping Zhao ◽  
Dingyue Chen

A tensile test of buried PE pipe is designed to test the mechanical performance. Then the constitutive model for the PE pipe can be established. The limit load of the PE pipe with local thinning defect can be studied with the method of combining the orthogonal design of experiment and finite element analysis. Then the factors of local thinning defect pipe limit load factors can be analyzed. The results show that the depth of the defect has a great effect on the limit load (internal pressure and bending moment) of PE pipe. The effects that the axial length of the defect and the circumferential length of the defect have on the limit load are not significant.


Author(s):  
Baojiu Lin ◽  
David W. Nicholson

This study concerns the development of a finite element model to support design improvements in elastomeric seals subject to high temperature and pressure, such as in aircraft engines. Existing finite element codes familiar to the authors do not couple thermal and mechanical fields, nor do they implement thermomechanical contact models suitable for highly deformable materials. Recently, the authors have introduced a thermohyperelastic constitutive model for near-incompressible elastomers. In two subsequent studies, using the constitutive model, a method has been introduced for finite element analysis of coupled thermomechanical response, including boundary contributions due to large deformation and variable contact. A new thermomechanical contact model has also been introduced to accommodate the softness of elastomers. The method has been implemented in a special purpose code which concerns a seal compressed into a well. Several computations are used to validate the code. Simulations of a seal in an idealized geometry indicate rapid pressure increase with increasing compression and temperature.


Sign in / Sign up

Export Citation Format

Share Document