scholarly journals Requirements of high levels of Hedgehog signaling activity for medial-region cell fate determination in Drosophila legs: identification of pxb, a putative Hedgehog signaling attenuator gene repressed along the anterior–posterior compartment boundary

2002 ◽  
Vol 116 (1-2) ◽  
pp. 3-18 ◽  
Author(s):  
Mikiko Inaki ◽  
Tetsuya Kojima ◽  
Ryu Ueda ◽  
Kaoru Saigo
Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1203-1212 ◽  
Author(s):  
Katerina Nestoras ◽  
Helena Lee ◽  
Jym Mohler

We have undertaken a genetic analysis of new strong alleles of knot (kn). The original kn1 mutation causes an alteration of wing patterning similar to that associated with mutations of fused (fu), an apparent fusion of veins 3 and 4 in the wing. However, unlike fu, strong kn mutations do not affect embryonic segmentation and indicate that kn is not a component of a general Hh (Hedgehog)-signaling pathway. Instead we find that kn has a specific role in those cells of the wing imaginal disc that are subject to ptc-mediated Hh-signaling. Our results suggest a model for patterning the medial portion of the Drosophila wing, whereby the separation of veins 3 and 4 is maintained by kn activation in the intervening region in response to Hh-signaling across the adjacent anterior-posterior compartment boundary.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 79-89 ◽  
Author(s):  
M.A. Singer ◽  
A. Penton ◽  
V. Twombly ◽  
F.M. Hoffmann ◽  
W.M. Gelbart

The imaginal disk expression of the TGF-beta superfamily member DPP in a narrow stripe of cells along the anterior-posterior compartment boundary is essential for proper growth and patterning of the Drosophila appendages. We examine DPP receptor function to understand how this localized DPP expression produces its global effects upon appendage development. Clones of saxophone (sax) or thick veins (tkv) mutant cells, defective in one of the two type I receptors for DPP, show shifts in cell fate along the anterior-posterior axis. In the adult wing, clones that are homozygous for a null allele of sax or a hypomorphic allele of tkv show shifts to more anterior fates when the clone is in the anterior compartment and to more posterior fates when the clone is in the posterior compartment. The effect of these clones upon the expression pattern of the downstream gene spalt-major also correlates with these specific shifts in cell fate. The similar effects of sax null and tkv hypomorphic clones indicate that the primary difference in the function of these two receptors during wing patterning is that TKV transmits more of the DPP signal than does SAX. Our results are consistent with a model in which a gradient of DPP reaches all cells in the developing wing blade to direct anterior-posterior pattern.


2017 ◽  
Vol 29 (12) ◽  
pp. 3102-3122 ◽  
Author(s):  
Olivier Godfroy ◽  
Toshiki Uji ◽  
Chikako Nagasato ◽  
Agnieszka P. Lipinska ◽  
Delphine Scornet ◽  
...  

2009 ◽  
Vol 15 (3) ◽  
pp. 371-380 ◽  
Author(s):  
Amanda W. Lund ◽  
Bülent Yener ◽  
Jan P. Stegemann ◽  
George E. Plopper

Sign in / Sign up

Export Citation Format

Share Document