scholarly journals Translational control of nuclear lamin B1 mRNA during oogenesis and early development of Xenopus

1999 ◽  
Vol 84 (1-2) ◽  
pp. 89-101 ◽  
Author(s):  
Thorsten Ralle ◽  
Dorothea Gremmels ◽  
Reimer Stick
1997 ◽  
Vol 7 (1-2) ◽  
pp. 73-94 ◽  
Author(s):  
Barbara Stebbins-Boaz ◽  
Joel D. Richter

2008 ◽  
Vol 36 (4) ◽  
pp. 671-676 ◽  
Author(s):  
Nancy Standart ◽  
Nicola Minshall

Selective protein synthesis in oocytes, eggs and early embryos of many organisms drives several critical aspects of early development, including meiotic maturation and entry into mitosis, establishment of embryonic axes and cell fate determination. mRNA-binding proteins which (usually) recognize 3′-UTR (untranslated region) elements in target mRNAs influence the recruitment of the small ribosomal subunit to the 5′ cap. Probably the best studied such protein is CPEB (cytoplasmic polyadenylation element-binding protein), which represses translation in the oocyte in a cap-dependent manner, and activates translation in the meiotically maturing egg, via cytoplasmic polyadenylation. Co-immunoprecipitation and gel-filtration assays revealed that CPEB in Xenopus oocytes is in a very large RNP (ribonucleoprotein) complex and interacts with other RNA-binding proteins including Xp54 RNA helicase, Pat1, RAP55 (RNA-associated protein 55) and FRGY2 (frog germ cell-specific Y-box protein 2), as well as the eIF4E (eukaryotic initiation factor 4E)-binding protein 4E-T (eIF4E-transporter) and an ovary-specific eIF4E1b, which binds the cap weakly. Functional tests which implicate 4E-T and eIF4E1b in translational repression in oocytes led us to propose a model for the specific inhibition of translation of a target mRNA by a weak cap-binding protein. The components of the CPEB RNP complex are common to P-bodies (processing bodies), neuronal granules and germinal granules, suggesting that a highly conserved ‘masking’ complex operates in early development, neurons and somatic cells.


BioEssays ◽  
1991 ◽  
Vol 13 (4) ◽  
pp. 179-183 ◽  
Author(s):  
Joel D. Richter

2021 ◽  
Vol 118 (25) ◽  
pp. e2107770118
Author(s):  
Natalie Y. Chen ◽  
Paul H. Kim ◽  
Yiping Tu ◽  
Ye Yang ◽  
Patrick J. Heizer ◽  
...  

Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1–deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin–deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2β, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2β and NM ruptures in nuclear lamin–deficient neurons and fibroblasts, and we tested whether manipulating LAP2β expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1–deficient embryos, we observed a strong correlation between low LAP2β levels and NM ruptures. We also found low LAP2β levels and frequent NM ruptures in neurons of cultured Lmnb1−/− neurospheres. Reducing LAP2β expression in Lmnb1−/− neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2β expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin–deficient fibroblasts. Reduced LAP2β expression increased NM ruptures, whereas increased LAP2β expression virtually abolished NM ruptures. Increased LAP2β expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2β expression bolsters NM integrity in nuclear lamin–deficient cells and markedly reduces NM rupture frequency.


Sign in / Sign up

Export Citation Format

Share Document