The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions

Author(s):  
Jan Gustafsson ◽  
Pasi Mikkola ◽  
Mika Jokinen ◽  
Jarl B Rosenholm
Clay Minerals ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 853-861 ◽  
Author(s):  
E. E. Saka ◽  
C. Güler

AbstractIn this study, the influence of pH, electrolyte concentration and type of ionic species (such as LiCl, NaCl, KCl, RbCl, CsCl, CaCl2, AlCl3) on the electrokinetic properties (zeta potential and electrokinetic charge density) of montmorillonite has been quantified. The zeta potential of montmorillonite particles did not change significantly with change in pH. The valencies of the ions have proven to have a great influence on the electrokinetic behaviour of the suspension. There is a gradual decrease in the zeta potential (from —24 mV to —12 mV) with increase in monovalent electrolyte concentration (from 10-4 M to 10-1 M). At any monovalent electrolyte concentration, the magnitude of the zeta potential increased with the electrolytes in the order Li+ > Na+ > K+ > Rb+ > Cs+. The zeta potential of the montmorillonite minerals in CaCl2 solutions illustrated the same behaviour as the monovalent cations. Less negative values were obtained for the CaCl2 electrolyte (∼–10 mV) due to the greater valence of the ions. A sign reversal was observed at an AlCl3 concentration of 5 x 10-4 M, and, at greater concentrations, zeta potential values had a positive sign (∼20 mV).The electrokinetic charge density of montmorillonite showed similar trends of variation in mono and divalent electrolyte solutions. Up to concentrations of ∼10-3 M, it remained practically constant at ∼0.5 x 10-3Cm-2, while for greater electrolyte concentrations the negative charge produced more negative values (–16 x 10-3Cm-2). The electrokinetic charge density of montmorillonite particles was constant at low AlCl3 concentrations, but at certain concentrations it increased rapidly and changed sign to positive.


2020 ◽  
Vol 1012 ◽  
pp. 167-172
Author(s):  
Elizabeth Mendes de Oliveira ◽  
Izabella Christynne Ribeiro Pinto Valadão ◽  
Jose Adilson de Castro ◽  
Leonardo Martins da Silval ◽  
Darlene Souza da Silva ◽  
...  

The stability of nanoparticles in natural aquatic systems is of great interest to the environmental risk assessment. The relevance of this study lies in the fact that nanoparticles are being produced and used in commercial products on a large scale, which makes the need to study its transport through the environment, especially in soil and water important due to their potential interactions with the ecosystems. In this research, the effects of nanoparticles of zinc oxide (NPZnO) in the behavior of nanoparticles of titanium dioxide (NPTiO2) was investigated. The influence of pH, ionic strength and zeta potential of the hazardous nanoparticles into soil landfills are studied using experimental procedures. Leaching experiments were prepared within soil column simulating landfills layers. Leaching experiments were carried out to simulate the capture and attenuation of these nanomaterials in municipal waste landfills. The results found that the presence of NPTiO2 in suspensions increases the stability of the suspensions keeping higher nanoparticles concentrations, while NPZnO promotes rapid sedimentation with lower equilibrium concentration of nanoparticles.


2006 ◽  
Vol 6 (1) ◽  
pp. 59-67 ◽  
Author(s):  
W. Dongsheng ◽  
L. Hong ◽  
L. Chunhua ◽  
T. Hongxiao

Pure Al13 solutions at various concentrations were prepared by using the SO4/Ba separation method and characterized by using 27Al-NMR, IR, PCS, AFM and Ferron assay. The mechanism of humic acid removal by coagulation with Al13, lab-made PACl and industry PACl was compared. Special attention has been paid to the aspects of different coagulation species. The influence of pH and dose was discussed respectively from the change of zeta potential, residue turbidity, and UV254. The results show that the Al13 is the dominant and important species in the coagulation process deciding the charge-neutralization ability.


2011 ◽  
Vol 413 ◽  
pp. 467-471 ◽  
Author(s):  
Bao Ju Liu ◽  
Shao Ying Ning ◽  
Yuan Xia Yang

The influence of pH of emulsified asphalt, the kinds and content of emulsifiers and stabilizers on asphalt-aggregate adhesion have been investigated in this paper. Results show that the pH of the emulsified asphalt has great impact on asphalt-aggregate adhesion by way of the effect of pH on asphalt, asphalt-aggregate adhesion is worst when asphalt emulsion at pH≈4, which is close to the isoelectric point of asphalt, the bigger the zeta potential absolute value of emulsified asphalt, the better the asphalt-aggregate adhesion property. Effect of emulsifiers on asphalt-aggregate adhesion is complex, the best dosage is at 0.2%. The addition of organic stabilizers are superior to inorganic stabilizers to improve the asphalt-aggregate adhesion, the best dosage is at 0.4%. Effect of mixing emulsifier and stabilizer is better than single-doped emulsifier and stabilizer.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


Author(s):  
A.M. Zetty Akhtar ◽  
M.M. Rahman ◽  
K. Kadirgama ◽  
M.A. Maleque

This paper presents the findings of the stability, thermal conductivity and viscosity of CNTs (doped with 10 wt% graphene)- TiO2 hybrid nanofluids under various concentrations. While the usage of cutting fluid in machining operation is necessary for removing the heat generated at the cutting zone, the excessive use of it could lead to environmental and health issue to the operators. Therefore, the minimum quantity lubrication (MQL) to replace the conventional flooding was introduced. The MQL method minimises the usage of cutting fluid as a step to achieve a cleaner environment and sustainable machining. However, the low thermal conductivity of the base fluid in the MQL system caused the insufficient removal of heat generated in the cutting zone. Addition of nanoparticles to the base fluid was then introduced to enhance the performance of cutting fluids. The ethylene glycol used as the base fluid, titanium dioxide (TiO2) and carbon nanotubes (CNTs) nanoparticle mixed to produce nanofluids with concentrations of 0.02 to 0.1 wt.% with an interval of 0.02 wt%. The mixing ratio of TiO2: CNTs was 90:10 and ratio of SDBS (surfactant): CNTs was 10:1. The stability of nanofluid checked using observation method and zeta potential analysis. The thermal conductivity and viscosity of suspension were measured at a temperature range between 30˚C to 70˚C (with increment of 10˚C) to determine the relationship between concentration and temperature on nanofluid’s thermal physical properties. Based on the results obtained, zeta potential value for nanofluid range from -50 to -70 mV indicates a good stability of the suspension. Thermal conductivity of nanofluid increases as an increase of temperature and enhancement ratio is within the range of 1.51 to 4.53 compared to the base fluid. Meanwhile, the viscosity of nanofluid shows decrements with an increase of the temperature remarks significant advantage in pumping power. The developed nanofluid in this study found to be stable with enhanced thermal conductivity and decrease in viscosity, which at once make it possible to be use as nanolubricant in machining operation.


2009 ◽  
Vol 45 (3) ◽  
pp. 92-100 ◽  
Author(s):  
P. N. Linnik ◽  
A. V. Zubko ◽  
I. B. Zubenko ◽  
I. I. Ignatenko ◽  
L. A. Malinovskaya

Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Sign in / Sign up

Export Citation Format

Share Document