The mycobiota of the weed Chromolaena odorata in southern Brazil with particular reference to fungal pathogens for biological control

1994 ◽  
Vol 98 (10) ◽  
pp. 1107-1116 ◽  
Author(s):  
Robert W. Barreto ◽  
Harry C. Evans
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Dominik Bleša ◽  
Pavel Matušinský ◽  
Romana Sedmíková ◽  
Milan Baláž

The use of biological control is becoming a common practice in plant production. One overlooked group of organisms potentially suitable for biological control are Rhizoctonia-like (Rh-like) fungi. Some of them are capable of forming endophytic associations with a large group of higher plants as well as mycorrhizal symbioses. Various benefits of endophytic associations were proved, including amelioration of devastating effects of pathogens such as Fusarium culmorum. The advantage of Rh-like endophytes over strictly biotrophic mycorrhizal organisms is the possibility of their cultivation on organic substrates, which makes their use more suitable for production. We focused on abilities of five Rh-like fungi isolated from orchid mycorrhizas, endophytic fungi Serendipita indica, Microdochium bolleyi and pathogenic Ceratobasidium cereale to inhibit the growth of pathogenic F. culmorum or Pyrenophora teres in vitro. We also analysed their suppressive effect on wheat infection by F. culmorum in a growth chamber, as well as an effect on barley under field conditions. Some of the Rh-like fungi affected the growth of plant pathogens in vitro, then the interaction with plants was tested. Beneficial effect was especially noted in the pot experiments, where wheat plants were negatively influenced by F. culmorum. Inoculation with S. indica caused higher dry shoot biomass in comparison to plants treated with fungicide. Prospective for future work are the effects of these endophytes on plant signalling pathways, factors affecting the level of colonization and surviving of infectious particles.


Plant Disease ◽  
2021 ◽  
Author(s):  
Leslie Amanda Holland ◽  
Renaud Travadon ◽  
Daniel P. Lawrence ◽  
Mohamed Taieb Nouri ◽  
Florent P Trouillas

Almond trunk and branch canker diseases constitute a major cause of tree mortality in California. Numerous fungal pathogens have been associated with these canker diseases and pruning wounds act as major infection courts. Prior to this study, there were no products registered in California for the management of these diseases. In this study, fungicidal products including synthetic chemistries, biocontrols, paint and a sealant were evaluated for preventing fungal pathogen infection via pruning wounds. In four field trials conducted over two dormant seasons, sixteen pruning wound treatments were tested using hand-held spray applications, against five almond canker pathogens, namely Botryosphaeria dothidea, Neofusicoccum parvum, Cytospora sorbicola, Ceratocystis destructans, and Eutypa lata. The fungicide thiophanate-methyl (Topsin M) provided 82% overall disease prevention against four fungal pathogens. The biological control agent, Trichoderma atroviride SC1 (Vintec), tested at three application rates, resulted in 90 to 93% protection of pruning wounds in field trials, and for individual pathogens ranged from 81-100% protection for the three rates. At the time of this publication, Vintec is being considered for registration as a biological control product for the prevention of almond canker diseases, while Topsin M is recommended to growers for the prevention of almond canker diseases. This research indicates that effective protection of pruning wounds from infection by almond canker pathogens can be achieved with a one-time spray application of thiophanate-methyl or the biocontrol, T. atroviride SC1 (recommended 2 g/liter) after pruning.


Botany ◽  
2009 ◽  
Vol 87 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Nick Reid ◽  
Simon F. Shamoun

Many mistletoe species are pests in agricultural and forest ecosystems throughout the world. Mistletoes are unusual “weeds” as they are generally endemic to areas where they achieve pest status and, therefore, classical biological control and broad-scale herbicidal control are usually impractical. In North American coniferous forests, dwarf mistletoe ( Arceuthobium spp.) infection results in major commercial losses and poses a public liability in recreation settings. Hyperparasitic fungi have potential as biological control agents of dwarf mistletoe, including species which attack shoots, berries, and the endophytic systems of dwarf mistletoe. Development of an inundative biological control strategy will be useful in situations where traditional silvicultural control is impractical or undesirable. In southern Australia, farm eucalypts are often attacked and killed by mistletoes ( Amyema spp.) in grazed landscapes where tree decline and biodiversity loss are major forms of land degradation. Although long-term strategies to achieve a balance between mistletoe and host abundance are promoted, many graziers want short-term options to treat severely infected trees. Recent research has revisited the efficiency and efficacy of silvicultural treatments and selective herbicides in appropriate situations. The results of recent research on these diverse management strategies in North America and Australia are summarized.


2005 ◽  
Vol 19 (1) ◽  
pp. 19-26 ◽  
Author(s):  
CAMILLA B. YANDOC ◽  
RAGHAVAN CHARUDATTAN ◽  
DONN G. SHILLING

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252770
Author(s):  
Pascal O. Aigbedion-Atalor ◽  
Itohan Idemudia ◽  
Medetissi Adom ◽  
Ethelyn E. Forchibe ◽  
Hospice Tossou ◽  
...  

The Neotropical invasive plant Chromolaena odorata R.M. King and H. Robinson (Asteraceae) is a serious weed in West and Central Africa and two biological control agents that have been introduced into West Africa to help reduce its impacts on agriculture and biodiversity, have established. The stem-galling fly, Cecidochares connexa (Macquart) (Diptera: Tephritidae), has spread widely across West Africa since its release in only Côte d’Ivoire, occurring in six countries. This study aimed to investigate whether the gall fly had spread further across West Africa and into Central Africa. Here, we surveyed C. odorata for C. connexa galls in Cameroon between October 2018 and October 2020, along roadsides, on farms, residential areas, and abandoned plots, encompassing various vegetation types. Additional surveys were conducted across four countries (Ghana, Togo, Benin Republic and Nigeria) in West Africa that we considered the probable pathway for the spread of the gall fly into Central Africa. Cecidochares connexa was present at five of the six locations surveyed in Cameroon, albeit in varying abundance. In Africa, these findings represent the first-ever report of C. connexa outside of West Africa. In West Africa, we recorded significant expansion in the geographic range of C. connexa, as reflected in the absent-present record of C. connexa in two locations in Nigeria and one in Ghana, as well as its occurrence in all locations surveyed in Benin Republic and Togo. Clearly, Ghana, Togo, Benin Republic and Nigeria served as the dispersal pathway of C. connexa from the release sites in Côte d’Ivoire into Cameroon, covering over 2,300 km. Following the spread and establishment of C. connexa into Cameroon, we anticipate that it will continue to spread further into other parts of Central Africa which are climatically suitable. Cecidochares connexa is currently the only biological control agent for C. odorata in Central Africa. Given that it has significantly reduced populations of C. odorata in other countries where it has established, it is expected to have a similar impact in Central Africa.


1998 ◽  
Vol 12 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Leon J. Scott ◽  
Corinna L. Lange ◽  
Glenn C. Graham ◽  
David K. Yeates

Asynchronous flowering was noted in a recently discovered infestation of siam weed in north Queensland. This may indicate some genetic diversity in the infestation, increasing concerns about the origin of the infestation. Internal transcribed spacer 1 (ITS1) sequence data were obtained for siam weed individuals from north Queensland, Indonesia, Thailand, South Africa, Ivory Coast, Brazil, Colombia, and the U.S. The ITS1 region is 258 base pairs long, and the populations that flower at different times in north Queensland differ by four base substitutions. The genotype common in north Queensland is also reported throughout the native and introduced ranges. The other genotype is reported only in north Queensland and southern Brazil. These data, in conjunction with prior investigations into possible origins, indicate that Brazil is the most likely source of the infestation in Australia.


Sign in / Sign up

Export Citation Format

Share Document