In-Situ observations of dendritic growth of ammonium chloride crystals from an aqueous solution system

1995 ◽  
Vol 32 (3) ◽  
pp. 445-450 ◽  
Author(s):  
Jun-Ming Liu ◽  
Zhi-Guo Liu ◽  
Zhuang-Chun Wu
2021 ◽  
Vol 1016 ◽  
pp. 997-1002
Author(s):  
Hikaru Nagata ◽  
Masa Ono ◽  
Yasuyuki Miyazawa ◽  
Yuji Hayashi ◽  
Yoshio Bizen

To clarify the effect of the acid solution type on corrosion resistance, the corrosion behavior of stainless steel brazed joints in HCl aqueous solution was evaluated through electrochemical measurements. Anodic polarization curves of a ferritic stainless-steel base metal, Ni-based brazing filler metals, and a brazed joint were recorded. In addition, in situ observations were conducted to observe the corrosion behavior of each structure of the brazed joint. Corrosion potentials of the brazing filler metal were lower than that of the base metal. In situ observations of the brazed joint revealed the order of corrosion in aqueous hydrochloric acid. According to the electrochemical measurements, under an actual corrosive environment, the brazing filler metal can function as an anode and selectively corrode. In addition, the anodic polarization curve of the brazed joint showed values between those of the polarization curves of the brazing filler metal and the base metal, indicating that the corrosion resistance could be electrochemically evaluated in HCl aqueous solution.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Sze Hoon Gan ◽  
Zarinah Waheed ◽  
Fung Chen Chung ◽  
Davies Austin Spiji ◽  
Leony Sikim ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 1250
Author(s):  
Yanxing Hu ◽  
Tao Che ◽  
Liyun Dai ◽  
Lin Xiao

In this study, a machine learning algorithm was introduced to fuse gridded snow depth datasets. The input variables of the machine learning method included geolocation (latitude and longitude), topographic data (elevation), gridded snow depth datasets and in situ observations. A total of 29,565 in situ observations were used to train and optimize the machine learning algorithm. A total of five gridded snow depth datasets—Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth, Global Snow Monitoring for Climate Research (GlobSnow) snow depth, Long time series of daily snow depth over the Northern Hemisphere (NHSD) snow depth, ERA-Interim snow depth and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) snow depth—were used as input variables. The first three snow depth datasets are retrieved from passive microwave brightness temperature or assimilation with in situ observations, while the last two are snow depth datasets obtained from meteorological reanalysis data with a land surface model and data assimilation system. Then, three machine learning methods, i.e., Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR), were used to produce a fused snow depth dataset from 2002 to 2004. The RFR model performed best and was thus used to produce a new snow depth product from the fusion of the five snow depth datasets and auxiliary data over the Northern Hemisphere from 2002 to 2011. The fused snow-depth product was verified at five well-known snow observation sites. The R2 of Sodankylä, Old Aspen, and Reynolds Mountains East were 0.88, 0.69, and 0.63, respectively. At the Swamp Angel Study Plot and Weissfluhjoch observation sites, which have an average snow depth exceeding 200 cm, the fused snow depth did not perform well. The spatial patterns of the average snow depth were analyzed seasonally, and the average snow depths of autumn, winter, and spring were 5.7, 25.8, and 21.5 cm, respectively. In the future, random forest regression will be used to produce a long time series of a fused snow depth dataset over the Northern Hemisphere or other specific regions.


Polar Biology ◽  
2021 ◽  
Author(s):  
Philipp Neitzel ◽  
Aino Hosia ◽  
Uwe Piatkowski ◽  
Henk-Jan Hoving

AbstractObservations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusaAglantha digitaleand appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores,Beroespp.,Euplokamissp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.


1995 ◽  
Vol 66 (21) ◽  
pp. 2912-2913 ◽  
Author(s):  
M. Davison ◽  
K. P. O’Donnell ◽  
U. M. Noor ◽  
D. Uttamchandani ◽  
L. E. A. Berlouis

RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20486-20497
Author(s):  
Zhiyan Liu ◽  
Rui Ma ◽  
Wenjie Du ◽  
Gang Yang ◽  
Tao Chen

Chitosan hydrogel is regenerated from alkali/urea aqueous solution and the lithium sulfonate second network is introduced by electron beam radiation-initiated in situ free radical polymerization. The freeze-dried aerogel has CO2 capture capacity.


Sign in / Sign up

Export Citation Format

Share Document