Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of a solid substrate

1998 ◽  
Vol 65 (1-2) ◽  
pp. 83-85 ◽  
Author(s):  
P. Selvakumar ◽  
L. Ashakumary ◽  
Ashok Pandey
2017 ◽  
Vol 7 (5) ◽  
pp. 17
Author(s):  
Mirza M.V. Baig ◽  
Aniruddha Ratnakar Apastambh

The production of Pectic enzymes by Aspergillus niger was studied under solid state fermentation (SSF). The effect of fermentation condition such as substrate concentration, inoculum volume, incubation time, moistening agent, inducers and organic and inorganic nitrogen sources was studied for enzyme production. Culture conditions were optimized for maximal yield of enzyme. The solid substrate wheat bran was most suitable for pectic enzyme production under SSF. Enzyme production was found maximum after 10 days of incubation. Lactose was found to be most effective as inducer. Gelatin as organic nitrogen source and ammonium nitrate as inorganic nitrogen source yielded high enzyme titres.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Gunashree B. Shivanna ◽  
Govindarajulu Venkateswaran

Fermentation is one of the industrially important processes for the development of microbial metabolites that has immense applications in various fields. This has prompted to employ fermentation as a major technique in the production of phytase from microbial source. In this study, a comparison was made between submerged (SmF) and solid-state fermentations (SSF) for the production of phytase fromAspergillus nigerCFR 335 andAspergillus ficuumSGA 01. It was found that both the fungi were capable of producing maximum phytase on 5th day of incubation in both submerged and solid-state fermentation media.Aspergillus nigerCFR 335 andA. ficuumproduced a maximum of 60.6 U/gds and 38 U/gds of the enzyme, respectively, in wheat bran solid substrate medium. Enhancement in the enzyme level (76 and 50.7 U/gds) was found when grown in a combined solid substrate medium comprising wheat bran, rice bran, and groundnut cake in the ratio of 2 : 1 : 1. A maximum of 9.6 and 8.2 U/mL of enzyme activity was observed in SmF byA. nigerCFR 335 andA.ficuum, respectively, when grown in potato dextrose broth.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2011 ◽  
Vol 54 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Christiane Trevisan Slivinski ◽  
Alex Vinicius Lopes Machado ◽  
Jorge Iulek ◽  
Ricardo Antônio Ayub ◽  
Mareci Mendes de Almeida

BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
Author(s):  
Valesca Weingartner Montibeller ◽  
Luciana Porto de Souza Vandenberghe ◽  
Antonella Amore ◽  
Carlos Ricardo Soccol ◽  
Leila Birolo ◽  
...  

2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


Sign in / Sign up

Export Citation Format

Share Document