Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs)

2003 ◽  
Vol 13 (15) ◽  
pp. 2527-2530 ◽  
Author(s):  
Edward W. Brooke ◽  
Stephen G. Davies ◽  
Andrew W. Mulvaney ◽  
Minoru Okada ◽  
Frédérique Pompeo ◽  
...  
ChemInform ◽  
2003 ◽  
Vol 34 (43) ◽  
Author(s):  
Edward W. Brooke ◽  
Stephen G. Davies ◽  
Andrew W. Mulvaney ◽  
Minoru Okada ◽  
Frederique Pompeo ◽  
...  

2009 ◽  
Vol 52 (8) ◽  
pp. 2188-2191 ◽  
Author(s):  
Wenhua Chu ◽  
Justin Rothfuss ◽  
Yunxiang Chu ◽  
Dong Zhou ◽  
Robert H. Mach

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi170-vi170
Author(s):  
Erica Power ◽  
Juhee Oh ◽  
Jonghoon Choi ◽  
William Elmquist ◽  
David Daniels

Abstract BACKGROUND Diffuse midline gliomas (DMGs) harboring the H3K27M mutation are highly aggressive, fatal brainstem tumors that primarily occur in children. The blood-brain barrier (BBB) prevents numerous drugs from reaching CNS tumors, like DMG, at cytotoxic concentrations. Convection-enhanced delivery (CED) has emerged as a drug delivery technique that bypasses the BBB through a direct interstitial infusion under a pressure gradient. However, drug distribution and clearance from the brain following CED is poorly understood and has been cited as a potential reason for the lack of efficacy observed in prior clinical trials. OBJECTIVE The objective of this study was to understand how two small molecule inhibitors (alisertib, ponatinib) that inhibit cell growth and proliferation in DMG cells in vitro distribute and clear from the brain following CED to the brainstem. METHODS Sprague-dawley rats underwent a single 60mL CED infusion of drug to the brainstem (200mM alisertib, 10mM ponatinib) and were sacrificed 0.083, 1, 2, 4, 8 and 24 hours following the completion of the infusion. Brains were dissected and drug concentration was determined via HPLC analysis. RESULTS No rats showed any clinical or neurological signs of toxicity post-infusion. Both drugs showed significant differences in drug concentration based on anatomical brain region where higher concentrations were observed in the pons and cerebellum compared to the cortex. Drug half-life in the brain was ~0.5 hours for alisertib and ~1 hour for ponatinib, but this was not significantly increased following co-administration of elacridar, a BBB efflux pump inhibitor. CONCLUSIONS These results suggest that elimination of drugs from the brain in a complex, multifactorial mechanism that warrants further preclinical investigation prior to the initiation of a clinical trial.


2021 ◽  
Author(s):  
Pratap Kumar Parida ◽  
Dipak Paul ◽  
Debamitra Chakravorty

<p><a>The over expression of Tumor necrosis factor-α (TNFα) has been implicated in a variety of disease and is classified as a therapeutic target for inflammatory diseases (Crohn disease, psoriasis, psoriatic arthritis, rheumatoid arthritis).Commercially available therapeutics are biologics which are associated with several risks and limitations. Small molecule inhibitors and natural compounds (saponins) were identified by researchers as lead molecules against TNFα, however, </a>they were often associated with high IC50 values which can lead to their failure in clinical trials. This warrants research related to identification of better small molecule inhibitors by screening of large compound libraries. Recent developments have demonstrated power of natural compounds as safe therapeutics, hence, in this work, we have identified TNFα phytochemical inhibitors using high throughput <i>in silico </i>screening approaches of 6000 phytochemicals followed by 200 ns molecular dynamics simulations and relative binding free energy calculations. The work yielded potent hits that bind to TNFα at its dimer interface. The mechanism targeted was inhibition of oligomerization of TNFα upon phytochemical binding to restrict its interaction with TNF-R1 receptor. MD simulation analysis resulted in identification of two phytochemicals that showed stable protein-ligand conformations over time. The two compounds were triterpenoids: Momordicilin and Nimbolin A with relative binding energy- calculated by MM/PBSA to be -190.5 kJ/Mol and -188.03 kJ/Mol respectively. Therefore, through this work it is being suggested that these phytochemicals can be used for further <i>in vitro</i> analysis to confirm their inhibitory action against TNFα or can be used as scaffolds to arrive at better drug candidates.</p>


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Christopher M Barbieri ◽  
Xinkang Wang ◽  
Xueping Zhou ◽  
Aimie M Ogawa ◽  
Kim O'Neil ◽  
...  

FXII is an emerging target for thrombosis, yet several questions remain to be addressed. Firstly, from drug discovery perspective, level of enzyme occupancy needed for efficacy (which largely dictates potency and selectivity requirement for small molecule inhibitors) is unclear, as most reported active site inhibitors have some level of off-target activities. Secondly, from disease treatment perspective, it is unclear whether FXIIa inhibition will be a safe strategy for stroke treatment or prevention, as it was recently reported that FXIIa inhibition destabilized the subocclusive thrombi in a plaque rupture model. In this presentation, we set out to address these questions using a previously described molecule, Inf4mut15. We generated the human albumin (HA)-Inf4mut15 fusion protein (Mut-inf) for our studies. In vitro Mut-inf displayed comparable potency as the widely used wild-type HA-Infestin4 (WT-inf) (human FXIIa Ki = 73 and 120 pM, respectively). Both infs acted as competitive reversible active site inhibitors of FXIIa, with no binding to FXII zymogen, hence same mode of action as certain small molecule inhibitors. Mut-inf, however, was much more selective against plasmin compared to WT-inf (20,000- and 75-fold Ki separation, respectively), consistent with results from the functional tPA-induced TEG assay, where Ly60 was reduced dose-dependently by WT- but not Mut-inf. Mut-inf aPTT doubling concentration was 15 uM and FXIIa Ki in 30% plasma was 3.5 nM. Calculated enzyme occupancy for Mut-inf for doubling human aPTT is thus 99.9%. In the rabbit model of cerebral microembolic signals (MES) induced by FeCl 3 injury of the carotid artery, treatment with vehicle (n=7), WT-, and Mut-inf (1mg/kg and n=5 each) produced arterial thrombus of 6.0±0.4, 1.9±0.6, and 0.2±0.1 mg, respectively; incidence of MES detected in the middle cerebral artery was 4.1±1.3, 1.8±0.6, and 0.0±0.0, respectively. In summary, our studies demonstrated that very high enzyme occupancy will be required for achieving a putative aPTT doubling target in human for FXIIa active site inhibitors, highlighting the challenge with the small molecule modality. Our MES studies suggest that targeting FXII may offer a safe strategy for stroke prevention and/or other thromboembolic disorders.


2003 ◽  
Vol 2 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Liping Wu ◽  
Jing Pan ◽  
Vala Thoroddsen ◽  
Deborah R. Wysong ◽  
Ronald K. Blackman ◽  
...  

ABSTRACT A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.


Sign in / Sign up

Export Citation Format

Share Document