EU eco-label scheme for indoor paints lowers the limit on TiO2 content

2002 ◽  
Vol 2002 (11) ◽  
pp. 4-5
Keyword(s):  
2021 ◽  
pp. 138136
Author(s):  
Melisa J. Gómez ◽  
Roberto O. Lucci ◽  
Esteban A. Franceschini ◽  
Gabriela I. Lacconi

2018 ◽  
Vol 8 (11) ◽  
pp. 2049 ◽  
Author(s):  
Hui Wang ◽  
Ke Jin ◽  
Xinyu Dong ◽  
Shihao Zhan ◽  
Chenghu Liu

According to the characteristics of asphalt pavement, a kind of nano-TiO2 photocatalytic coating was prepared by using the emulsified asphalt as the carrier. All of its properties met the technical requirements. An exhaust gas degradation test device and its test steps were developed. The evaluation indexes, cumulative degradation rate, and degradation efficiency, were put forward. From the two aspects of the nano-TiO2 content in photocatalytic coatings and the spraying amount of photocatalytic coatings in the surface of slabs (300 mm × 300 mm), the exhaust gas degradation effects, the performances of skid resistance, and the water permeability of asphalt mixture were analyzed. The test results showed that the cumulative degradation rate of exhaust gas was better when nano-TiO2 content was increased in the range of 0–8% and the spraying amount was changed in the range of 0–333.3 g/m2. In practical engineering applications, the anti-skid performance of asphalt pavement can be satisfied when the spraying amount of photocatalytic coating was limited to under 550 g/m2. The spraying amount of nano-TiO2 photocatalytic coating had little effect on the water permeability of the asphalt mixture. Therefore, 8% nano-TiO2 content in the coating and a 400 g/m2 spraying amount were finally recommended based on the photocatalytic properties, as well as for economic reasons.


1972 ◽  
Vol 236 (68) ◽  
pp. 110-111 ◽  
Author(s):  
S. E. KESSON ◽  
I. E. SMITH
Keyword(s):  

2018 ◽  
Vol 18 (2) ◽  
pp. 229-238
Author(s):  
Israa Khahtan Sabree

Magnesium oxide (MgO) is regarded as a biocompatible material. A composite material fromMgO oxide prepared by mixing MgO powder with TiO2 (rutile phase) (2, 5, 10)Wt.% usingpowder metallurgy technique. It is used to be bioceramic material. The compressed sampleswere dried and sintered at (1200) ᵒC. porosity measurement showed that the porositydecreasing with increasing TiO2% . X-ray showed the presence of Mg2TiO4 in the compositestructure of MgO with (5, 10)%TiO2 samples.The mechanical study showed an increasing in compressive strength, hardness, wearresistance and biodegradation resistance with increasing TiO2% content in the limit of usedpercentage. The prepared composite material didn’t present antibacterial activity whileprevious researches showed opposite result because of using nanoscale particle size of MgO.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Nur Iman Amir ◽  
Nurhidayatullaili Muhd Julkaplia ◽  
Saba Afzal

Titanium dioxide (TiO2) nanoparticles are used enormously for treating wastewater pollutants due to their unique optoelectronic and physiochemical properties. Though, wide bandgap, fast recombination of e- - h+ pair, and low adsorption toward organic pollutants limit their applications. However, immobilization of TiO2 on Chitosan (Cs) is believed to overcome these limitations. Cs with plenty of NH2 and OH groups in their structure are expected to enhance their adsorption and consequently photocatalytic performance. A series of TiO2/Cs photocatalysts have been prepared using a chemical co-precipitation method. Amount of TiO2 is varied from 0.25, 0.50, and 0.75 to 1.0 g. The photocatalysts are characterized by using FESEM-EDS, CHNS Elemental Analyser TGA, FTIR, and UV-Vis spectroscopy. These characterization results revealed the formation of a good interface between TiO2 and Cs matrix. Increasing TiO2 content significantly increased the thermal stability of the photocatalyst up to 600ᵒC. The photocatalytic activity of Cs/TiO2 is observed under UV light which is found to be more significant with 1:1(TiO2: Cs) composition for the degradation of methylene blue dye at 85 % and be maintained up to 4 numbers of cycles. This demonstrated open new insight into the application of Cs as a support materials and adsorption agent in TiO2 based photocatalyst system


1994 ◽  
pp. 915-918 ◽  
Author(s):  
K. Komeya ◽  
K. Funahashi ◽  
T. Meguro ◽  
T. Kameda

2020 ◽  
Vol 254 ◽  
pp. 123469 ◽  
Author(s):  
D.A. Alonso-De la Garza ◽  
Edén A. Rodríguez ◽  
José E. Contreras ◽  
J.F. López-Perales ◽  
Leonel Díaz-Tato ◽  
...  

2020 ◽  
Vol 61 (3) ◽  
Author(s):  
Yuanyuan Xiao ◽  
Shuo Chen ◽  
Yaoling Niu ◽  
Xiaohong Wang ◽  
Qiqi Xue ◽  
...  

Abstract Continentalcollision zones have been proposed as primary sites of net continental crustal growth. Therefore, studies on syn-collisional granitoids with mafic magmatic enclaves (MMEs) are essential for testing this hypothesis. The Baojishan (BJS) and Qumushan (QMS) syn-collisional plutons in the North Qilian Orogen (NQO) on the northern margin of the Tibetan Plateau have abundant MMEs in sharp contact with host granitoids, sharing similar constituent minerals but with higher modal abundances of mafic minerals in MMEs. The QMS host granitoids have high Sr/Y and La/Yb ratios, showing adakitic compositions, which are differentfrom the BJS granitoids. Based on bulk-rock compositions and zircon U-Pb age-dating, recent studies on these two plutons proposed that MMEs represent cumulates crystallized early from the same magmatic system as their host granitoids, and their parental melts are best understood as andesitic magmas produced by partial melting of the underthrusting upper ocean crust upon collision with some terrigenous sediments under amphibolite facies. Here, we focus on the trace-element geochemistry of the constituent mineral phases of both MMEs and their host granitoids of the QMS and BJS plutons. Weshow that different mineral phases preferentially host different trace elements; for example, most rare earth elements (REEs and Y) reside in titanite (only found in the QMS pluton), amphibole, apatite, epidote and zircon (mostly heavy-REEs); and high-field-strength elements (HFSEs) reside in biotite, titanite, amphibole and zircon. Based on the mineral chemical data, we show that for these two plutons, MMEs are of similar cumulate origin, crystallized from primitive andesitic melts in the early stage of granitoid magmatism. The primitive andesitic melts for these syn-collisional granitoids are most likely produced by the partial melting of the oceanic crust, supporting the hypothesis of continental crustal growth considering the syn-collisional granitoids represent juvenile continental crust. As evidenced by distinct mineral compositions, the two plutons have different parental magma compositions, for example higher TiO2 content and higher Sr/Y and La/Yb ratios in the QMS parental magmas, a signature best understood as being inherited from the source. The higher TiO2 content of the parental magma for the QMS pluton leads to the common presence of titanite in the QMS pluton (absent in the BJS pluton), crystallization of which in turn controls the trace-element (REE, Y, Nb, Ta and others) systematics in the residual melts towards an adakitic signature. Therefore, parental magmas with high TiO2 content and high Sr/Y and La/Yb ratios, as well as their further fractionation of titanite, are important factors in the development of adakitic compositions, as represented by the QMS host granitoids. This model offers a new perspective on the petrogenesis of adakitic rocks. The present study further demonstrates that, in general, mineral chemistry holds essential information for revealing the petrogenesis of granitoid rocks.


Sign in / Sign up

Export Citation Format

Share Document