Simulation of critical cooling rate and process conditions for metallic glasses in vertical type twin-roll casting

2017 ◽  
Vol 27 (11) ◽  
pp. 2406-2414 ◽  
Author(s):  
Zhi-pu PEI ◽  
Dong-ying JU ◽  
Xue LI
2018 ◽  
Vol 918 ◽  
pp. 48-53 ◽  
Author(s):  
Olexandr Grydin ◽  
Mykhailo Stolbchenko ◽  
Maria Bauer ◽  
Mirko Schaper

The industrial application of high-alloyed Al-Mg-Si alloys for the production of thin strips by means of twin-roll casting is limited due to the structural inhomogeneity and segregation formation. To reach the highest mechanical properties of the finished product, a direct influence on the strip formation conditions during the twin-roll casting can be applied. Analogous to the asymmetric rolling process, additional shear stresses were created in the strip forming zone by using different circumferential velocities and torques of the caster rolls. To provide the asymmetric process conditions, only one caster roll was left driven and the second one was left idling during the casting process. The microstructure and the mechanical properties of the strips in the as-cast state as well as after the homogenization and subsequent age-hardening were analyzed. A comparison of the test results showed a positive influence of the asymmetry conditions on the strips’ properties.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1168 ◽  
Author(s):  
Zhen Xu ◽  
Sixue Wang ◽  
Hongbin Wang ◽  
Hua Song ◽  
Shengli Li ◽  
...  

In this study, a twin-roll casting sheet of 6061 aluminum alloy was cooled using furnace, asbestos, air, wind and water. The effect of cooling rate on the microstructure and properties of twin-roll casting 6061 aluminum alloy sheet were studied. Optical microscope, scanning electron microscope, X-ray diffraction, microhardness tester and universal tensile machine were used to observe the microstructure and properties of twin-roll casting sheet of 6061 aluminum alloy. The results show that the higher the cooling rate, the smaller the grain size of the alloy and the smaller the number of precipitated phases in the matrix. Uniform grain size of the alloy could be obtained at a stable cooling rate. The hardness, tensile strength and elongation of the twin-roll casting sheet increased with cooling rate. Under wind cooling condition, the twin-roll casting sheet demonstrated excellent comprehensive performance, i.e., 88 MPa of yield strength, 178 MPa of tensile strength and 15% of elongation, respectively. A quantitative Hall–Petch relation was established to predict the yield strength of 6061 twin-roll casting sheets with different grain sizes and cooling rate.


2011 ◽  
Vol 690 ◽  
pp. 331-334 ◽  
Author(s):  
M. Aljarrah ◽  
Elhachmi Essadiqi ◽  
D.H. Kang ◽  
In Ho Jung

The use of wrought magnesium for automobile structural components is an important component of the mass reduction strategy for automobiles to improve their fuel efficiency. Compared to Direct chill casting, Twin Roll Casting (TRC) allows major reduction of hot rolling steps in the production of Mg sheet due to the thin thickness of the as-cast strip. This TRC route can substantially reduce the time and cost to produce Mg alloy sheet product. In this work, AZ31 magnesium alloy was casted to 5 and 6 mm thick strips under different process conditions. Microstructure of these strips was analyzed using optical microscopy, SEM and EPMA. TRC strip was annealed under two different conditions: 2 hours at 330 and 1 hour at 400°C. It has been found that heat treatment at 400°C for 1 hour reduces centerline segregation significantly. TRC strips were rolled down to 2 mm and annealed at 450°C for 2 minutes. The average grain size was 4-6 µm and mechanical properties were comparable with commercial AZ31 sheet.


2021 ◽  
Author(s):  
Dongpo Xuan ◽  
cheng zhou ◽  
You Zhou ◽  
Tianliang Jiang ◽  
Biji Zhu ◽  
...  

Abstract Using the commercial finite element software ProCAST to predict the temperature field, the flow field, the turbulent kinetic energy, and melt-pool outlet temperature of the top side-pouring twin-roll casting (TSTRC) of 6.5 wt.% Si steel process, and the cellular automaton–finite element (CA-FE) method was used to simulate the melt-pool outlet microstructure. The effect of different process conditions on the TSTRC process was investigated through numerical simulation and a processing technic appropriate for the production of 6.5 wt.% Si steel was obtained. Meanwhile, the influence of violent stirring in the melt-pool on the microstructure under different process conditions was evaluated. It was found that vigorous stirring in the melt-pool was conducive to formate the equiaxed crystal structure. Not only realized the near-final shape of the metal sheet, but also realized the near-final shape of the microstructure. Chose the proper process to experiment, and from comparing the simulation and the experiment, the simulation and experimental results were in good agreement, which verified the simulation's feasibility and accuracy.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 952
Author(s):  
Shiju Li ◽  
Bowen Wei ◽  
Wei Yu ◽  
Chen He ◽  
Yong Li ◽  
...  

In this work, a Al-Cu-Li alloy plate with outstanding mechanical properties was successfully prepared with electromagnetic twin-roll casting (TRC) technology. The microstructure of Al-Cu-Li alloy manufactured by conventional mold casting, TRC, and electromagnetic TRC was studied in detail. The action mechanism of electromagnetic oscillation field (EOF) in the TRC process was studied by systematic experimental characterization and numerical simulation. The results show that the EOF will enlarge the circumfluence area in the cast-rolling zone, accelerate the mass transfer and heat transfer in the molten pool, and make the solute field and flow field in the liquid cavity tend to be evenly distributed. Further, the introduction of the EOF will produce the electromagnetic body force F with the maximum strength of 14 N/m3. The F acting on the solidification front will eliminate the accumulation and deposition of Cu2+, Li+, Mg2+, Zn2+, Mn2+ at the dendrite tip and inhibit the growth of dendrites. At the same time, the F can refine the microstructure of the TRC plate, promote the formation of equiaxed crystals, improve the supersaturated solid solubility of solute elements in the a(Al) matrix, and avoid the appearance of obvious solute segregation area or the formation of excessive solute enrichment area. Therefore, the macro-segregation in TRC plate was significantly reduced, the solidification structure was dramatically refined, and the comprehensive properties of the alloy were remarkably improved.


2013 ◽  
Vol 690-693 ◽  
pp. 218-221
Author(s):  
Ting Zhang ◽  
Xiao Ming Zhang ◽  
Zhi Yuan Guo ◽  
Yu Qian Wang ◽  
Cheng Gang Li

Effect of secondary cooling on non-oriented electrical steel strips was investigated. The 2.0 mm thick cast strips contain two compositions were produced by twin-roll casting process, cooled in the air or cooled by spraying water. The microstructure was observed by optical microscopy, and EBSD was used to characterize the texture of the cast strips. The results showed that air-cooling cast strips have uniform and equiaxed grains with average size of 250 μm. The microstructure of the water-spraying cast strips compose of most equiaxed grains and a small number of abnormal big grains. At the same time, the secondary cooling rate mildly affects the cast texture strength but has no influence on the texture type.


Sign in / Sign up

Export Citation Format

Share Document