Multi-objective Optimization of Welding Parameters in Submerged Arc Welding of API X65 Steel Plates

2015 ◽  
Vol 22 (9) ◽  
pp. 870-878 ◽  
Author(s):  
M. A. Moradpour ◽  
S. H. Hashemi ◽  
K. Khalili
2019 ◽  
Vol 269 ◽  
pp. 01009 ◽  
Author(s):  
Suryana ◽  
Agus Pramono ◽  
Iskandar Muda ◽  
Ade Setiawan

API 5L-X65 steel is the type of high strength low alloy (HSLA) steel, widely used in the manufacture of pipe. Submerged arc welding (SAW) is widely used for the fabrication of the pipe, the extent of use submerged arc welding caused it could be done automatically and high reliability. The results of the welding process will lead to differences and changes in the microstructure in heat affected zone (HAZ) and weld metal that will affect the mechanical properties of the output, so as to obtain good welding results required the selection of welding parameters accordingly. As the use of the heat input during welding is very important influence on the mechanical properties and microstructure of the weld. The purpose of this study to determine the effect of heat input on the microstructure, hardness and toughness of welds in submerged arc welding. Welding currents used were 200, 300, 400 and 500 Ampere with a voltage were used 25, 27 and 30 Volt. The results showed that the higher heat input will result in a growing area of HAZ region width and grain size increased. Highest hardness values are the results of the weld heat input with a low of 244.69 HVN caused by the rapid cooling rate of the weld area. The highest toughness values are the results of the highest heat input that was dominated by acicular ferrite phase.


2016 ◽  
Vol 16 (3) ◽  
pp. 141-151 ◽  
Author(s):  
Satish Kumar Sharma ◽  
Sachin Maheshwari ◽  
Sandeep Rathee

AbstractIn this paper, for the purpose of better control as well as multi-objective optimization of bead geometry parameters, the optimal combination of submerged arc welding (SAW) process variables is determined using fuzzy logic approach. Open circuit voltage, trolley speed, contact tube to work distance, preheating temperature and wire feed rate are taken as process variables during SAW of the pipeline steel. For this experimental investigation, experiments are designed and performed according to response surface methodology (RSM). Bead width, penetration, and reinforcement are taken as the performance measures in bead geometry. In fuzzy logic, two membership function (MF) namely triangular and trapezoidal are employed for the performance comparison of SAW process. As compared to triangular MF, the use of trapezoidal MF has given the more logical and better-optimized results for bead geometry parameters. Outcomes of the study are also confirmed by conducting the confirmatory experiments.


2016 ◽  
Vol 16 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Satish Kumar Sharma ◽  
Sachin Maheshwari

AbstractIn any type of welding, its heat affected zone (HAZ) is the most critical section where the probability of hydrogen or solidification cracking is prominent. Continuous efforts are being applied by researchers and welders to minimize HAZ and its alterations. For the same purpose, by varying the factors of submerged arc welding (SAW) process which directly influences the heat input and cooling rate of the weld, experiments are carried out on the plates of micro-alloyed high strength pipeline steel. Voltage, welding speed, contact tube to work distance, wire feed rate and preheating temperature are taken as process variables. The experiments are designed according to the central composite rotatable design approach of response surface methodology (RSM). Multi-objective optimization of HAZ characteristics (HAZ area and its hardness) is carried out using grey relational analysis (GRA). To un-correlate the correlated characteristics of HAZ, principal component analysis (PCA) approach is coupled with GRA. The results of the confirmatory test have shown an improvement of 28.51 % and 5.94 % in area and hardness value of HAZ respectively at optimal setting combination of SAW process parameters.


Author(s):  
Navid Ansaripour ◽  
Ali Heidari ◽  
Seyed Ali Eftekhari

Residual stresses and distortion in welded joints undermine the durability of the structure and prevent a correct assembly of the parts. The principal objective of this study is to find a solution to minimize the residual stresses and distortion induced by submerged arc welding process. Accordingly, first, a thermal simulation of the process was undertaken by the finite-element method, and the results were used to provide a mechanical solution. The mechanical solution determined residual stresses and distortion that were found to be consistent with experimental results. Next, drawing on the design of experiment method based on cooling time between first pass and second pass and the first and second pass welding speed, a set of training data was formed for the developed artificial neural network. The trained neural network was then used as input for the optimization algorithm. Single- and multi-objective Genetic Algorithm and single and multi-objective Harmony Search methods were used for optimization process. Results illustrate that artificial neural network and multi-objective optimization algorithms are excellent methods for optimizing the residual stresses and distortion caused by welding process. As it was proved in this study, the single-objective optimization of the welding process is effective in reducing both the residual stress and distortion. The double-objective optimization also contributed to reduce both residual stress and distortion with 4% (for residual stresses) and 26.56% (for distortion) in multi-objective Harmony Search which was the better algorithm based on the solution time. Given the contradiction of the residual stresses and distortion in the welding process, the double-objective algorithm was found to be less successful in minimizing the two target functions relative to the case with the two optimized separately.


2017 ◽  
Vol 1143 ◽  
pp. 52-57
Author(s):  
Elena Scutelnicu ◽  
Carmen Catalina Rusu ◽  
Bogdan Georgescu ◽  
Octavian Mircea ◽  
Melat Bormambet

The paper addresses the development of advanced welding technologies with two and three solid wires for joining of HSLA API-5l X70 (High-strength low-alloy) steel plates with thickness of 19.1 mm. The experiments were performed using a multi-wire Submerged Arc Welding (SAW) system that was developed for welding of steels with solid, tubular and cold wires, in different combinations. The main goal of the research was to assess the mechanical performances of the welded joints achieved by multi-wire SAW technology and then to compare them with the single wire variant, as reference system. The welded samples were firstly subjected to NDT control by examinations with liquid penetrant, magnetic particle, ultrasonic and gamma radiation, with the aim of detecting the specimens with flaws and afterwards to reconsider and redesign the corresponding Welding Procedure Specifications (WPS). The defect-free welded samples were subjected to tensile, Charpy V-notch impact and bending testing in order to analyse and report the mechanical behaviour of API-5l X70 steel during multi-wire SAW process. The experimental results were processed and comparatively discussed. The challenge of the investigation was to find the appropriate welding technology which responds simultaneously to the criteria of quality and productivity. Further research on metallurgical behaviour of the base material will be developed, in order to conclude the complete image of the SAW process effects and to understand how the multi-wire technologies affect the mechanical and metallurgical characteristics of the API-5L X70 steel used in pipelines fabrication.


2020 ◽  
Vol 19 (01) ◽  
pp. 131-146
Author(s):  
Aditya Kumar ◽  
Kulwant Singh

An exothermic flux for submerged arc welding process has been developed which is capable of enhancing weld penetration of the joint. For this purpose, thermit mixture in different proportions (20% and 40%) has been added to the parent flux by agglomeration process. Beads on plate were deposited using parent and developed exothermic fluxes for a comparative study. EH14 filler wires in combination with parent and exothermic fluxes were used in this investigation. The effects of welding parameters and exothermic flux on weld penetration were investigated and the results have been presented in this paper. It has been found that the penetration increases from 2.95 to 3.51[Formula: see text]mm with 40% thermit mixture addition to the parent flux. It is further observed that penetration increases with increase in the amount of thermit mixture added. A mathematical model has been developed to predict weld penetration or select suitable welding parameters to obtain the desired penetration. The significance of coefficients was tested using Student’s [Formula: see text]-test and the adequacy of developed model was tested using [Formula: see text]-test. The effects of various parameters on penetration have been presented in graphical form for better understanding.


Sign in / Sign up

Export Citation Format

Share Document